The biocompatibility of polymers, lipids and surfactants used to formulate is crucial for the safe and sustainable development of nanocarriers (nanoparticles, liposomes, micelles, and other nanocarriers). In this study, Cholesterol (Chol), a typical biocompatible component of liposomal systems, was formulated in Chol-based solid nanoparticles (NPs) stabilized by the action of surfactant and without the help of any other formulative component. Parameters as type (Solutol HS 15, cholic acid sodium salt, poly vinyl alcohol and Pluronic-F68), concentration (0.2; 0.5 and 1% w/v) of surfactant and working temperature (r.t. and 45°C) were optimized and all samples characterized in terms of size, zeta potential, composition, thermal behavior and structure. Results demonstrated that only Pluronic-F68 (0.5% w/v) favors the organization of Chol chains in structured NPs with mean diameter less than 400nm. Moreover, we demonstrated the pivotal role of working temperature on surfactant aggregation state/architecture/stability of Chol-based nanoparticles. At room temperature, Pluronic-F68 exists in solution as individual coils. In this condition, nanoprecipitation of Chol formed the less stable NPs with a 14±3% (w/w) of Pluronic-F68 prevalently on surface (NP-Chol/0.5). On the contrary, working near the critical micelle temperature (CMT) of surfactant (45°C), Chol precipitates with Pluronic-F68 (9±5% w/w) in a compact stable matricial structure (NP-Chol/0.5-45). In vitro studies highlight the low toxicity and the affinity of NP-Chol/0.5-45 for neuronal cells suggesting their potential applicability in pathologies with a demonstrated alteration of neuronal plasticity and synaptic communication (i.e. Huntington's disease).

EXPLOITING THE VERSATILITY OF CHOLESTEROL IN NANOPARTICLES FORMULATION / Belletti, Daniela; Grabrucker, A. M; Pederzoli, Francesca; Menrath, I; Cappello, V; Vandelli, M. A; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara. - In: INTERNATIONAL JOURNAL OF PHARMACEUTICS. - ISSN 0378-5173. - STAMPA. - 511:(2016), pp. 331-340-340. [10.1016/j.ijpharm.2016.07.022]

EXPLOITING THE VERSATILITY OF CHOLESTEROL IN NANOPARTICLES FORMULATION

BELLETTI, Daniela;Grabrucker, A. M;PEDERZOLI, FRANCESCA;FORNI, Flavio;TOSI, Giovanni;RUOZI, Barbara
2016

Abstract

The biocompatibility of polymers, lipids and surfactants used to formulate is crucial for the safe and sustainable development of nanocarriers (nanoparticles, liposomes, micelles, and other nanocarriers). In this study, Cholesterol (Chol), a typical biocompatible component of liposomal systems, was formulated in Chol-based solid nanoparticles (NPs) stabilized by the action of surfactant and without the help of any other formulative component. Parameters as type (Solutol HS 15, cholic acid sodium salt, poly vinyl alcohol and Pluronic-F68), concentration (0.2; 0.5 and 1% w/v) of surfactant and working temperature (r.t. and 45°C) were optimized and all samples characterized in terms of size, zeta potential, composition, thermal behavior and structure. Results demonstrated that only Pluronic-F68 (0.5% w/v) favors the organization of Chol chains in structured NPs with mean diameter less than 400nm. Moreover, we demonstrated the pivotal role of working temperature on surfactant aggregation state/architecture/stability of Chol-based nanoparticles. At room temperature, Pluronic-F68 exists in solution as individual coils. In this condition, nanoprecipitation of Chol formed the less stable NPs with a 14±3% (w/w) of Pluronic-F68 prevalently on surface (NP-Chol/0.5). On the contrary, working near the critical micelle temperature (CMT) of surfactant (45°C), Chol precipitates with Pluronic-F68 (9±5% w/w) in a compact stable matricial structure (NP-Chol/0.5-45). In vitro studies highlight the low toxicity and the affinity of NP-Chol/0.5-45 for neuronal cells suggesting their potential applicability in pathologies with a demonstrated alteration of neuronal plasticity and synaptic communication (i.e. Huntington's disease).
12-lug-2016
511
331-340
340
EXPLOITING THE VERSATILITY OF CHOLESTEROL IN NANOPARTICLES FORMULATION / Belletti, Daniela; Grabrucker, A. M; Pederzoli, Francesca; Menrath, I; Cappello, V; Vandelli, M. A; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara. - In: INTERNATIONAL JOURNAL OF PHARMACEUTICS. - ISSN 0378-5173. - STAMPA. - 511:(2016), pp. 331-340-340. [10.1016/j.ijpharm.2016.07.022]
Belletti, Daniela; Grabrucker, A. M; Pederzoli, Francesca; Menrath, I; Cappello, V; Vandelli, M. A; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara
File in questo prodotto:
File Dimensione Formato  
Belletti .pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1111055
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact