We study asymptotic behavior of (all) positive solutions of the non-oscillatory half-linear differential equation of the form (r(t)|y'|^ {alpha-1} sgn y')'=p(t)|y|^{alpha-1}sgn y, where alpha>1 and r,p are positive continuous functions, with the help of the Karamata theory of regularly varying functions and the de Haan theory. We show that increasing resp. decreasing solutions belong to the de Haan class Gamma resp. Gamma- under suitable assumptions. Further we study behavior of slowly varying solutions for which asymptotic formulas are established. Some of our results are new even in the linear case alpha=2.

Solutions of half-linear differential equations in the classes Gamma and Pi / Rehak, Pavel; Taddei, Valentina. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 29:7-8(2016), pp. 683-714.

Solutions of half-linear differential equations in the classes Gamma and Pi

TADDEI, Valentina
2016

Abstract

We study asymptotic behavior of (all) positive solutions of the non-oscillatory half-linear differential equation of the form (r(t)|y'|^ {alpha-1} sgn y')'=p(t)|y|^{alpha-1}sgn y, where alpha>1 and r,p are positive continuous functions, with the help of the Karamata theory of regularly varying functions and the de Haan theory. We show that increasing resp. decreasing solutions belong to the de Haan class Gamma resp. Gamma- under suitable assumptions. Further we study behavior of slowly varying solutions for which asymptotic formulas are established. Some of our results are new even in the linear case alpha=2.
2016
29
7-8
683
714
Solutions of half-linear differential equations in the classes Gamma and Pi / Rehak, Pavel; Taddei, Valentina. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 29:7-8(2016), pp. 683-714.
Rehak, Pavel; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Rehak-Taddei3.pdf

Open access

Descrizione: articolo
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 186.67 kB
Formato Adobe PDF
186.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1110744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact