Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO 3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley-Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm 2) capable of generating a current density of 17 mA cm-2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.
Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator / Spanier, Jonathan E.; Fridkin, Vladimir M.; Rappe, Andrew M.; Akbashev, Andrew R.; Polemi, Alessia; Qi, Yubo; Gu, Zongquan; Young, Steve M.; Hawley, Christopher J.; Imbrenda, Dominic; Xiao, Geoffrey; Bennett Jackson, Andrew L.; Johnson, Craig L.. - In: NATURE PHOTONICS. - ISSN 1749-4885. - 10:9(2016), pp. 611-616. [10.1038/nphoton.2016.143]
Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator
POLEMI, Alessia;
2016
Abstract
Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO 3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley-Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm 2) capable of generating a current density of 17 mA cm-2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.File | Dimensione | Formato | |
---|---|---|---|
nphoton.2016.143.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
883.16 kB
Formato
Adobe PDF
|
883.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris