The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous 3-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal.

An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth / Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 7:(2016), pp. 11555-11561. [10.1038/ncomms11555]

An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

FONTANESI, Claudio;
2016

Abstract

The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous 3-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal.
2016
7
11555
11561
An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth / Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 7:(2016), pp. 11555-11561. [10.1038/ncomms11555]
Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.
File in questo prodotto:
File Dimensione Formato  
ncomms11555.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1109330
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 67
social impact