The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by $sqrt{N}$ of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration model and the configuration model with degrees 1 and 2. For the generalized random graph, we first show the existence of a finite annealed inverse critical temperature $0le eta^{mathrm{an}}_c < infty$ and then prove our results in the uniqueness regime, i.e., the values of inverse temperature $eta$ and external magnetic field $B$ for which either $eta<eta^{mathrm{an}}_c$ and $B=0$, or $eta>0$ and $B eq 0$. In the case of the configuration model, the central limit theorem holds in the whole region of the parameters $eta$ and $B$, because phase transitions do not exist for these systems as they are closely related to one-dimensional Ising models. Our proofs are based on explicit computations that are possible since the Ising model on the generalized random graph in the annealed setting is reduced to an inhomogeneous Curie-Weiss model, while the analysis of the configuration model with degrees only taking values 1 and 2 relies on that of the classical one-dimensional Ising model.
Annealed central limit theorems for the Ising model on random graphs / Giardina', Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa. - In: ALEA. - ISSN 1980-0436. - ELETTRONICO. - 13:1(2016), pp. 121-161. [10.30757/alea.v13-06]
Annealed central limit theorems for the Ising model on random graphs
GIARDINA', Cristian;GIBERTI, Claudio;
2016
Abstract
The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by $sqrt{N}$ of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration model and the configuration model with degrees 1 and 2. For the generalized random graph, we first show the existence of a finite annealed inverse critical temperature $0le eta^{mathrm{an}}_c < infty$ and then prove our results in the uniqueness regime, i.e., the values of inverse temperature $eta$ and external magnetic field $B$ for which either $eta<eta^{mathrm{an}}_c$ and $B=0$, or $eta>0$ and $B eq 0$. In the case of the configuration model, the central limit theorem holds in the whole region of the parameters $eta$ and $B$, because phase transitions do not exist for these systems as they are closely related to one-dimensional Ising models. Our proofs are based on explicit computations that are possible since the Ising model on the generalized random graph in the annealed setting is reduced to an inhomogeneous Curie-Weiss model, while the analysis of the configuration model with degrees only taking values 1 and 2 relies on that of the classical one-dimensional Ising model.File | Dimensione | Formato | |
---|---|---|---|
2016_03_Giardina.pdf
Open access
Descrizione: Articolo
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
528.73 kB
Formato
Adobe PDF
|
528.73 kB | Adobe PDF | Visualizza/Apri |
VOR_Annealed central limit theorems for the Ising model.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
764.29 kB
Formato
Adobe PDF
|
764.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris