The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by $sqrt{N}$ of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration model and the configuration model with degrees 1 and 2. For the generalized random graph, we first show the existence of a finite annealed inverse critical temperature $0le eta^{mathrm{an}}_c < infty$ and then prove our results in the uniqueness regime, i.e., the values of inverse temperature $eta$ and external magnetic field $B$ for which either $eta<eta^{mathrm{an}}_c$ and $B=0$, or $eta>0$ and $B eq 0$. In the case of the configuration model, the central limit theorem holds in the whole region of the parameters $eta$ and $B$, because phase transitions do not exist for these systems as they are closely related to one-dimensional Ising models. Our proofs are based on explicit computations that are possible since the Ising model on the generalized random graph in the annealed setting is reduced to an inhomogeneous Curie-Weiss model, while the analysis of the configuration model with degrees only taking values 1 and 2 relies on that of the classical one-dimensional Ising model.

Annealed central limit theorems for the Ising model on random graphs / Giardina', Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa. - In: ALEA. - ISSN 1980-0436. - ELETTRONICO. - 13:1(2016), pp. 121-161. [10.30757/alea.v13-06]

Annealed central limit theorems for the Ising model on random graphs

GIARDINA', Cristian;GIBERTI, Claudio;
2016

Abstract

The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by $sqrt{N}$ of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration model and the configuration model with degrees 1 and 2. For the generalized random graph, we first show the existence of a finite annealed inverse critical temperature $0le eta^{mathrm{an}}_c < infty$ and then prove our results in the uniqueness regime, i.e., the values of inverse temperature $eta$ and external magnetic field $B$ for which either $eta<eta^{mathrm{an}}_c$ and $B=0$, or $eta>0$ and $B eq 0$. In the case of the configuration model, the central limit theorem holds in the whole region of the parameters $eta$ and $B$, because phase transitions do not exist for these systems as they are closely related to one-dimensional Ising models. Our proofs are based on explicit computations that are possible since the Ising model on the generalized random graph in the annealed setting is reduced to an inhomogeneous Curie-Weiss model, while the analysis of the configuration model with degrees only taking values 1 and 2 relies on that of the classical one-dimensional Ising model.
13
1
121
161
Annealed central limit theorems for the Ising model on random graphs / Giardina', Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa. - In: ALEA. - ISSN 1980-0436. - ELETTRONICO. - 13:1(2016), pp. 121-161. [10.30757/alea.v13-06]
Giardina', Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa
File in questo prodotto:
File Dimensione Formato  
2016_03_Giardina.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 528.73 kB
Formato Adobe PDF
528.73 kB Adobe PDF Visualizza/Apri
VOR_Annealed central limit theorems for the Ising model.pdf

accesso aperto

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 764.29 kB
Formato Adobe PDF
764.29 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1106739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact