Inorganic polymer cement paste was used as cleaner binder for the design of lightweight matrices as insulating envelopes and panels in building and construction industries. Sponge-like structure with a homogeneously distributed pore network, low density and low thermal conductivity permitted to classify the geopolymer-wood fiber composites promising clean insulating materials. Matrices with the density ∼0.79 g/cm<sup>3</sup>, bi-axial four-point flexural strength of ∼4 MPa presented thermal conductivity between 0.2 and 0.3 W/(m K). The possibility of substituting the sodium silicate with rice ash-NaOH system and the efficiency of the matrices to constitute an effective tortuous road for the thermal gradient improved the sustainability and quality of this new class of products. The pores network and the microstructure approximated by a spatial periodic geometry suggested a "macro transport" mechanism to explain the movement of heat across the matrix of light geopolymer composite.
Cleaner production of the lightweight insulating composites: Microstructure, pore network and thermal conductivity / Fongang, R. T. Tene; Pemndje, J.; Lemougna, P. N.; Melo, U. Chinje; Nanseu, C. P.; Nait Ali, B.; Kamseu, Elie; Leonelli, Cristina. - In: ENERGY AND BUILDINGS. - ISSN 0378-7788. - ELETTRONICO. - 107:(2015), pp. 113-122. [10.1016/j.enbuild.2015.08.009]
Cleaner production of the lightweight insulating composites: Microstructure, pore network and thermal conductivity
KAMSEU, Elie;LEONELLI, Cristina
2015
Abstract
Inorganic polymer cement paste was used as cleaner binder for the design of lightweight matrices as insulating envelopes and panels in building and construction industries. Sponge-like structure with a homogeneously distributed pore network, low density and low thermal conductivity permitted to classify the geopolymer-wood fiber composites promising clean insulating materials. Matrices with the density ∼0.79 g/cm3, bi-axial four-point flexural strength of ∼4 MPa presented thermal conductivity between 0.2 and 0.3 W/(m K). The possibility of substituting the sodium silicate with rice ash-NaOH system and the efficiency of the matrices to constitute an effective tortuous road for the thermal gradient improved the sustainability and quality of this new class of products. The pores network and the microstructure approximated by a spatial periodic geometry suggested a "macro transport" mechanism to explain the movement of heat across the matrix of light geopolymer composite.File | Dimensione | Formato | |
---|---|---|---|
Energy and Buildings 107 2015 113–122.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipologia:
Versione pubblicata dall'editore
Dimensione
3.53 MB
Formato
Adobe PDF
|
3.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris