A Bose-Einstein condensate (BEC) confined in a one-dimensional lattice under the effect of an external homogeneous field is described by the Gross-Pitaevskii equation. Here we prove that such an equation can be reduced, in the semiclassical limit and in the case of a lattice with a finite number of wells, to a finite-dimensional discrete nonlinear Schrödinger equation. Then, by means of numerical experiments we show that the BEC's center of mass exhibits an oscillating behavior with modulated amplitude; in particular, we show that the oscillating period actually depends on the shape of the initial wavefunction of the condensate as well as on the strength of the nonlinear term. This fact opens a question concerning the validity of a method proposed for the determination of the gravitational constant by means of the measurement of the oscillating period.
Nonlinear Schrödinger equations with a multiple-well potential and a Stark-type perturbation / Sacchetti, Andrea. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 321-322(2016), pp. 39-50.
Data di pubblicazione: | 2016 | |
Titolo: | Nonlinear Schrödinger equations with a multiple-well potential and a Stark-type perturbation | |
Autore/i: | Sacchetti, Andrea | |
Autore/i UNIMORE: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.physd.2016.02.016 | |
Rivista: | ||
Volume: | 321-322 | |
Pagina iniziale: | 39 | |
Pagina finale: | 50 | |
Codice identificativo ISI: | WOS:000386991300003 | |
Codice identificativo Scopus: | 2-s2.0-84962362311 | |
Citazione: | Nonlinear Schrödinger equations with a multiple-well potential and a Stark-type perturbation / Sacchetti, Andrea. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 321-322(2016), pp. 39-50. | |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
VOR_Nonlinear Schrödinger equations.pdf | Versione dell'editore (versione pubblicata) | Open Access Visualizza/Apri |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris