Standard tests for adhesive bond characterization suffer for several deficiencies. The simplest specimens to make and test are lap joint geometries (e.g. single, double, symmetric, etc.) that generate complex stress distributions with irregularities and even singularities of the stress state. Those with the stress state closer to pure shear (e.g. napkin ring or Arcan) are difficult to make and require special test fixtures. This paper examines the stress state in the adhesive of a simple beam specimen obtained by bonding two flat plates one upon the other and loading the final sandwich in three-point bending. An elementary theory is used to optimize the specimen for in-situ measurements of either shear strength or shear modulus of the adhesive. The accuracy of the model is validated with finite element analyses, showing good agreement between the analytical and finite element model and also providing suggestions for the best geometry to be adopted for practical implementation of the test.
Modeling and optimization of the sandwich beam specimen in three-point bending for adhesive bond characterization / Dragoni, Eugenio; H. F., Brinson. - In: INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES. - ISSN 0143-7496. - STAMPA. - 68:(2016), pp. 380-388. [10.1016/j.ijadhadh.2015.12.014]
Modeling and optimization of the sandwich beam specimen in three-point bending for adhesive bond characterization
DRAGONI, Eugenio;
2016
Abstract
Standard tests for adhesive bond characterization suffer for several deficiencies. The simplest specimens to make and test are lap joint geometries (e.g. single, double, symmetric, etc.) that generate complex stress distributions with irregularities and even singularities of the stress state. Those with the stress state closer to pure shear (e.g. napkin ring or Arcan) are difficult to make and require special test fixtures. This paper examines the stress state in the adhesive of a simple beam specimen obtained by bonding two flat plates one upon the other and loading the final sandwich in three-point bending. An elementary theory is used to optimize the specimen for in-situ measurements of either shear strength or shear modulus of the adhesive. The accuracy of the model is validated with finite element analyses, showing good agreement between the analytical and finite element model and also providing suggestions for the best geometry to be adopted for practical implementation of the test.File | Dimensione | Formato | |
---|---|---|---|
2016_IJAA_Dragoni_Brinson_3P_Bending_Sandwich_Beam.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris