Organophosphorus compounds are common additives included in liquid lubricants for many applications, in particular automotive applications. Typically, organic phosphites function as friction-modifiers whereas phosphates as anti-wear additives. While the antiwear action of phosphates is now well understood, the mechanism by which phosphites reduce friction is still not clear. Here we study the tribochemistry of both phosphites and phosphates using gas phase lubrication (GPL) and elucidate the microscopic mechanisms that lead to the better frictional properties of phosphites. In particular, by in situ spectroscopic analysis we show that the friction reduction is connected to the presence of iron phosphide, which is formed by tribochemical reactions involving phosphites. The functionality of elemental phosphorus in reducing the friction of iron-based interfaces is elucidated by first principle calculations. In particular, we show that the work of separation and shear strength of iron dramatically decrease by increasing the phosphorus concentration at the interface. These results suggest that the functionality of phosphites as friction modifiers may be related to the amount of elemental phosphorus that they can release at the tribological interface.
Tribochemistry of phosphorus additives: Experiments and first-principles calculations / De Barros Bouchet, M. I; Righi, Maria Clelia; Philippon, D.; Mambingo Doumbe, S.; Le Mogne, T.; Martin, J. M.; Bouffet, A.. - In: RSC ADVANCES. - ISSN 2046-2069. - 5:61(2015), pp. 49270-49279. [10.1039/c5ra00721f]
Tribochemistry of phosphorus additives: Experiments and first-principles calculations
RIGHI, Maria Clelia;
2015
Abstract
Organophosphorus compounds are common additives included in liquid lubricants for many applications, in particular automotive applications. Typically, organic phosphites function as friction-modifiers whereas phosphates as anti-wear additives. While the antiwear action of phosphates is now well understood, the mechanism by which phosphites reduce friction is still not clear. Here we study the tribochemistry of both phosphites and phosphates using gas phase lubrication (GPL) and elucidate the microscopic mechanisms that lead to the better frictional properties of phosphites. In particular, by in situ spectroscopic analysis we show that the friction reduction is connected to the presence of iron phosphide, which is formed by tribochemical reactions involving phosphites. The functionality of elemental phosphorus in reducing the friction of iron-based interfaces is elucidated by first principle calculations. In particular, we show that the work of separation and shear strength of iron dramatically decrease by increasing the phosphorus concentration at the interface. These results suggest that the functionality of phosphites as friction modifiers may be related to the amount of elemental phosphorus that they can release at the tribological interface.File | Dimensione | Formato | |
---|---|---|---|
RighiTribo15_RSC_Phosphorus (1).pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris