Our aim in this paper is to study, in term of finite dimensional exponential attractors, the Willmore regularization, (depending on a small regularization parameter epsilon >0), of two phase-field equations, namely, the Allen–Cahn and the Cahn–Hilliard equations. In both cases, we construct robust families of exponential attractors, that is, attractors that are continuous with respect to the perturbation parameter.

Robust family of exponential attractors for isotropic crystal models / Cherfils, Laurence; Gatti, Stefania. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - ELETTRONICO. - 39:7(2016), pp. 1705-1729. [10.1002/mma.3597]

Robust family of exponential attractors for isotropic crystal models

GATTI, Stefania
2016

Abstract

Our aim in this paper is to study, in term of finite dimensional exponential attractors, the Willmore regularization, (depending on a small regularization parameter epsilon >0), of two phase-field equations, namely, the Allen–Cahn and the Cahn–Hilliard equations. In both cases, we construct robust families of exponential attractors, that is, attractors that are continuous with respect to the perturbation parameter.
2016
39
7
1705
1729
Robust family of exponential attractors for isotropic crystal models / Cherfils, Laurence; Gatti, Stefania. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - ELETTRONICO. - 39:7(2016), pp. 1705-1729. [10.1002/mma.3597]
Cherfils, Laurence; Gatti, Stefania
File in questo prodotto:
File Dimensione Formato  
10.1002_mma.3597(1).pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 678.44 kB
Formato Adobe PDF
678.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1100725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact