The contact problem of a Timoshenko beam of finite length loaded by concentrated forces and couples and perfectly bonded to a homogeneous elastic and isotropic half plane is considered in the present work. The study is aimed to investigate the effects induced by shear deformation of the beam on the contact stresses arising at the interface between the beam and the underlying half plane. The asymptotic analysis of the stress field at the beam edges and in the neighborhood of the loaded section of the beam allows us to characterize the singular nature of the peeling and shear stresses. The problem is formulated by imposing the strain compatibility condition between the beam and the half plane, thus leading to a system of two singular integral equations with Cauchy kernel. The unknown interfacial stresses are expanded in series of Jacobi orthogonal polynomials displaying complex singularity. This approach allows us to handle the oscillatory singularity and to reduce the integral equations to a linear algebraic system of equations for the unknown coefficients of the interfacial stresses, which is solved through a method of collocation. The interfacial peeling and shear stresses and, in turn, the displacement field along the contact region have been calculated under various loading conditions acting on the beam. The internal forces and moments along the beam have been evaluated varying the shear and flexural stiffness of the beam. The complex stress intensity factors and the strength of the stress singularities have been assessed in detail.
A loaded Timoshenko beam bonded to an elastic half plane / Lanzoni, Luca; Radi, Enrico. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - ELETTRONICO. - 92-93:(2016), pp. 76-90. [10.1016/j.ijsolstr.2016.04.021]
A loaded Timoshenko beam bonded to an elastic half plane
LANZONI, Luca;RADI, Enrico
2016
Abstract
The contact problem of a Timoshenko beam of finite length loaded by concentrated forces and couples and perfectly bonded to a homogeneous elastic and isotropic half plane is considered in the present work. The study is aimed to investigate the effects induced by shear deformation of the beam on the contact stresses arising at the interface between the beam and the underlying half plane. The asymptotic analysis of the stress field at the beam edges and in the neighborhood of the loaded section of the beam allows us to characterize the singular nature of the peeling and shear stresses. The problem is formulated by imposing the strain compatibility condition between the beam and the half plane, thus leading to a system of two singular integral equations with Cauchy kernel. The unknown interfacial stresses are expanded in series of Jacobi orthogonal polynomials displaying complex singularity. This approach allows us to handle the oscillatory singularity and to reduce the integral equations to a linear algebraic system of equations for the unknown coefficients of the interfacial stresses, which is solved through a method of collocation. The interfacial peeling and shear stresses and, in turn, the displacement field along the contact region have been calculated under various loading conditions acting on the beam. The internal forces and moments along the beam have been evaluated varying the shear and flexural stiffness of the beam. The complex stress intensity factors and the strength of the stress singularities have been assessed in detail.File | Dimensione | Formato | |
---|---|---|---|
TIMOSHENKO BEAM_14.doc
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
581 kB
Formato
Microsoft Word
|
581 kB | Microsoft Word | Visualizza/Apri Richiedi una copia |
VOR_A loaded Timoshenko beam bonded to an elastic half plane.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris