An analytic solution for the steady-state temperature distribution in an infinite conductive medium containing an insulated toroidal inhomogeneity and subjected to remotely applied uniform heat flux is obtained. The temperature flux on the torus surface is then determined as a function of torus parameters. This result is used to calculate the resistivity contribution tensor for the toroidal inhomogeneity required to evaluate the effective conductive properties of a material containing multiple inhomogeneities of this shape.

Toroidal insulating inhomogeneity in an infinite space and related problems / Radi, Enrico; Sevostianov, I.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - ELETTRONICO. - 472:2187(2016), pp. 1-18. [10.1098/rspa.2015.0781]

Toroidal insulating inhomogeneity in an infinite space and related problems

RADI, Enrico;
2016

Abstract

An analytic solution for the steady-state temperature distribution in an infinite conductive medium containing an insulated toroidal inhomogeneity and subjected to remotely applied uniform heat flux is obtained. The temperature flux on the torus surface is then determined as a function of torus parameters. This result is used to calculate the resistivity contribution tensor for the toroidal inhomogeneity required to evaluate the effective conductive properties of a material containing multiple inhomogeneities of this shape.
2016
472
2187
1
18
Toroidal insulating inhomogeneity in an infinite space and related problems / Radi, Enrico; Sevostianov, I.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - ELETTRONICO. - 472:2187(2016), pp. 1-18. [10.1098/rspa.2015.0781]
Radi, Enrico; Sevostianov, I.
File in questo prodotto:
File Dimensione Formato  
PRSA 2016.pdf

Accesso riservato

Descrizione: articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1095292
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact