Lowering the thermal energy and increasing the kinetic energyof hard metal particles sprayed by the newly developed HVAF systems can significantly reduce their decarburization, and increases the sliding wear and corrosion resistance of the resulting coatings, making the HVAF technique attractive, both economically and environmentally, over its HVOF predecessors. Two agglomerated and sintered feedstock powder chemistries, WC-Co (88/12) and WC-CoCr (86/10/4), respectively, with increasing primary carbides grain size from 0.2 to 4.0 microns, have been deposited by the latest HVAF-M3 process onto carbon steel substrates. Their dry sliding wear behaviors and friction coefficients were evaluated at room temperature via Ball-on-disk (ASTM G99-90) wear tests against Al2O3 counterparts, and via Pin-on-disk (ASTM G77-05) wear tests against modified martensitic steel counterparts in both dry and lubricated conditions. Sliding wear mechanisms, with the formation of wavy surface morphology and brittle cracking, are discussed regarding the distribution and size of primary carbides. Corrosion behaviors were evaluated via standard Neutral Salt Spray, Acetic Acid Salt Spray, accelerated corrosion test, and electrochemical polarization test at room temperature. The optimization of the tribological properties of the coatings is discussed, focusing on the suitable selection of primary carbide size for different working load applications.

Tribological Properties of Hard Metal Coatings Sprayed by High-Velocity Air Fuel Process / Lyphout, C.; Sato, K.; Houdkova, S.; Smazalova, E.; Lusvarghi, Luca; Bolelli, Giovanni; Sassatelli, Paolo. - In: JOURNAL OF THERMAL SPRAY TECHNOLOGY. - ISSN 1059-9630. - STAMPA. - 25:(2016), pp. 331-345. [10.1007/s11666-015-0285-4]

Tribological Properties of Hard Metal Coatings Sprayed by High-Velocity Air Fuel Process

LUSVARGHI, Luca;BOLELLI, Giovanni;SASSATELLI, PAOLO
2016-01-01

Abstract

Lowering the thermal energy and increasing the kinetic energyof hard metal particles sprayed by the newly developed HVAF systems can significantly reduce their decarburization, and increases the sliding wear and corrosion resistance of the resulting coatings, making the HVAF technique attractive, both economically and environmentally, over its HVOF predecessors. Two agglomerated and sintered feedstock powder chemistries, WC-Co (88/12) and WC-CoCr (86/10/4), respectively, with increasing primary carbides grain size from 0.2 to 4.0 microns, have been deposited by the latest HVAF-M3 process onto carbon steel substrates. Their dry sliding wear behaviors and friction coefficients were evaluated at room temperature via Ball-on-disk (ASTM G99-90) wear tests against Al2O3 counterparts, and via Pin-on-disk (ASTM G77-05) wear tests against modified martensitic steel counterparts in both dry and lubricated conditions. Sliding wear mechanisms, with the formation of wavy surface morphology and brittle cracking, are discussed regarding the distribution and size of primary carbides. Corrosion behaviors were evaluated via standard Neutral Salt Spray, Acetic Acid Salt Spray, accelerated corrosion test, and electrochemical polarization test at room temperature. The optimization of the tribological properties of the coatings is discussed, focusing on the suitable selection of primary carbide size for different working load applications.
25
331
345
Tribological Properties of Hard Metal Coatings Sprayed by High-Velocity Air Fuel Process / Lyphout, C.; Sato, K.; Houdkova, S.; Smazalova, E.; Lusvarghi, Luca; Bolelli, Giovanni; Sassatelli, Paolo. - In: JOURNAL OF THERMAL SPRAY TECHNOLOGY. - ISSN 1059-9630. - STAMPA. - 25:(2016), pp. 331-345. [10.1007/s11666-015-0285-4]
Lyphout, C.; Sato, K.; Houdkova, S.; Smazalova, E.; Lusvarghi, Luca; Bolelli, Giovanni; Sassatelli, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1083571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact