A strong attention is recently paid to surface properties of building materials as these allows controlling solar gains of the building envelope and overheating of buildings and urban areas. In this regard, deterioration phenomena due to biological aggression can quickly damage solar-reflecting roof surfaces and thus increase sharply solar gains, discomfort, air-conditioning costs and waterproofing degradation. The same deterioration problem has deleterious effect on cultural heritage, ruining its huge historic and artistic value. This work is aimed at providing an overview on the different organisms that affect the surface of most used building materials, to support the design of new building materials with long-lasting surface properties and to find a way to preserve cultural heritage. Artificial ageing is the long-term aim of this investigation, in which what in nature happens after months or years is compressed in a very short time by forcing the growth of microorganisms through a strict control on the different conditioning factors. Both natural and artificial ageing are eventually outlined in the last part of this work to provide a comprehensive idea of what is necessary to study in a complete way biological ageing protocols on building materials. Several characterization techniques are also introduced to analyse the influence of microorganisms on the surface of different building materials.
Review on the Influence of Biological Deterioration on the Surface Properties of Building Materials: Organisms, Materials, and Methods / Ferrari, Chiara; Santunione, Giulia; Libbra, Antonio; Muscio, Alberto; Sgarbi, Elisabetta; Siligardi, Cristina; Barozzi, Giovanni Sebastiano. - In: INTERNATIONAL JOURNAL OF DESIGN & NATURE AND ECODYNAMICS. - ISSN 1755-7445. - STAMPA. - 10:1(2015), pp. 21-39. [10.2495/DNE-V10-N1-21-39]
Review on the Influence of Biological Deterioration on the Surface Properties of Building Materials: Organisms, Materials, and Methods
FERRARI, CHIARA;SANTUNIONE, GIULIA;LIBBRA, Antonio;MUSCIO, Alberto;SGARBI, Elisabetta;SILIGARDI, Cristina;BAROZZI, Giovanni Sebastiano
2015
Abstract
A strong attention is recently paid to surface properties of building materials as these allows controlling solar gains of the building envelope and overheating of buildings and urban areas. In this regard, deterioration phenomena due to biological aggression can quickly damage solar-reflecting roof surfaces and thus increase sharply solar gains, discomfort, air-conditioning costs and waterproofing degradation. The same deterioration problem has deleterious effect on cultural heritage, ruining its huge historic and artistic value. This work is aimed at providing an overview on the different organisms that affect the surface of most used building materials, to support the design of new building materials with long-lasting surface properties and to find a way to preserve cultural heritage. Artificial ageing is the long-term aim of this investigation, in which what in nature happens after months or years is compressed in a very short time by forcing the growth of microorganisms through a strict control on the different conditioning factors. Both natural and artificial ageing are eventually outlined in the last part of this work to provide a comprehensive idea of what is necessary to study in a complete way biological ageing protocols on building materials. Several characterization techniques are also introduced to analyse the influence of microorganisms on the surface of different building materials.File | Dimensione | Formato | |
---|---|---|---|
2015_DNE_Ferrarietal.pdf
Open access
Descrizione: articolo principale
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
3.42 MB
Formato
Adobe PDF
|
3.42 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris