A new approach is developed for the solvability of nonlocal problems in Hilbert spaces associated to nonlinear differential equations. It is based on a joint combination of the degree theory with the approximation solvability method and the bounding functions technique. No compactness or condensivity condition on the nonlinearities is assumed. Some applications of the abstract result to the study of nonlocal problems for integrodifferential equations and systems of integro-differential equations are then showed. A generalization of the result by using nonsmooth bounding functions is given.
An approximation solvability method for nonlocal differential problems in Hilbert spaces / Benedetti, Irene; Loi, Nguyen V.; Malaguti, Luisa; Obukhovskii, Valeri. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - ELETTRONICO. - (2017), pp. 1-33.
Data di pubblicazione: | 2017 |
Titolo: | An approximation solvability method for nonlocal differential problems in Hilbert spaces |
Autore/i: | Benedetti, Irene; Loi, Nguyen V.; Malaguti, Luisa; Obukhovskii, Valeri |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S0219199716500024 |
Rivista: | |
Pagina iniziale: | 1 |
Pagina finale: | 33 |
Codice identificativo ISI: | WOS:000395154200001 |
Codice identificativo Scopus: | 2-s2.0-84964331043 |
Citazione: | An approximation solvability method for nonlocal differential problems in Hilbert spaces / Benedetti, Irene; Loi, Nguyen V.; Malaguti, Luisa; Obukhovskii, Valeri. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - ELETTRONICO. - (2017), pp. 1-33. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
BLMO.pdf | Articolo principale | Post-print dell'autore (bozza post referaggio) | Open Access Visualizza/Apri |
Benedetti Loi Malaguti Obukhovskii 2017.pdf | reprint | Versione dell'editore (versione pubblicata) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris