The Cheeger problem consists in minimizing the ratio "perimeter over volume" among subsets of a given, bounded domain. This problem has connections with several variational problems (eigenvalue estimates, prescribed mean curvature, Total Variation minimization, and others). After introducing the problem, we will focus on properties of Cheeger sets (i.e., solutions of the above minimization problem) with special emphasis on the two dimensional case. In particular, we shall present some recent results obtained in collaboration with A. Pratelli, on the characterization of Cheeger sets in non-convex, planar domains.
An overview on the Cheeger problem / Leonardi, Gian Paolo. - ELETTRONICO. - 166:(2015), pp. 117-139. (Intervento presentato al convegno New Trends in Shape Optimization tenutosi a Erlangen, Germania nel 23-27 settembre 2013) [10.1007/978-3-319-17563-8_6].
An overview on the Cheeger problem
LEONARDI, Gian Paolo
2015
Abstract
The Cheeger problem consists in minimizing the ratio "perimeter over volume" among subsets of a given, bounded domain. This problem has connections with several variational problems (eigenvalue estimates, prescribed mean curvature, Total Variation minimization, and others). After introducing the problem, we will focus on properties of Cheeger sets (i.e., solutions of the above minimization problem) with special emphasis on the two dimensional case. In particular, we shall present some recent results obtained in collaboration with A. Pratelli, on the characterization of Cheeger sets in non-convex, planar domains.File | Dimensione | Formato | |
---|---|---|---|
LeonardiCheegerFinal.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
356.5 kB
Formato
Adobe PDF
|
356.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
NewTrendsShapeOpt.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
4.79 MB
Formato
Adobe PDF
|
4.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris