La1-xSrxFe1-yCuyO3±w (x=0, 0.2; y=0, 0.2) nanoparticles have been prepared by solution combustion synthesis exploiting both conventional and microwave heating in the ignition of the self-sustaining reactions. Interaction of microwaves with the reaction mixture allowed significant reduction of the ignition time according to the dielectric properties of the precursor gels, which have been measured at room temperature in the 0.5-3 GHz frequency range. Both the ignition strategies led to the preparation of crystalline single-phase products without affecting particles morphology. The ignition technique influenced only the average particles size with those prepared by microwaves-ignition, possessing typically larger dimension, as a probable consequence of the higher temperatures reached due to microwave absorbing products. Perfectly crystallised nanoparticles were obtained after combustion syntheses and calcination at 600 °C for 3 h in the particle size range between 20 and 80 nm dependently upon the heating source and the dopant level.
Solution combustion synthesis of La1-xSrxFe1-yCuyO3±w (x=0, 0.2; Y=0, 0.2) perovskite nanoparticles: Conventional vs. microwaves ignition / Rosa, Roberto; Ponzoni, Chiara; Veronesi, Paolo; Natali Sora, Isabella; Felice, Valeria; Leonelli, Cristina. - In: CERAMICS INTERNATIONAL. - ISSN 0272-8842. - ELETTRONICO. - 41:6(2015), pp. 7803-7810. [10.1016/j.ceramint.2015.02.114]
Solution combustion synthesis of La1-xSrxFe1-yCuyO3±w (x=0, 0.2; Y=0, 0.2) perovskite nanoparticles: Conventional vs. microwaves ignition
ROSA, Roberto;PONZONI, Chiara;VERONESI, Paolo;LEONELLI, Cristina
2015
Abstract
La1-xSrxFe1-yCuyO3±w (x=0, 0.2; y=0, 0.2) nanoparticles have been prepared by solution combustion synthesis exploiting both conventional and microwave heating in the ignition of the self-sustaining reactions. Interaction of microwaves with the reaction mixture allowed significant reduction of the ignition time according to the dielectric properties of the precursor gels, which have been measured at room temperature in the 0.5-3 GHz frequency range. Both the ignition strategies led to the preparation of crystalline single-phase products without affecting particles morphology. The ignition technique influenced only the average particles size with those prepared by microwaves-ignition, possessing typically larger dimension, as a probable consequence of the higher temperatures reached due to microwave absorbing products. Perfectly crystallised nanoparticles were obtained after combustion syntheses and calcination at 600 °C for 3 h in the particle size range between 20 and 80 nm dependently upon the heating source and the dopant level.File | Dimensione | Formato | |
---|---|---|---|
CeramInt_2015.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris