OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. METHODS: We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. RESULTS:We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. CONCLUSIONS: We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca2+-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression.

The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle / Dyar, Kenneth A.; Ciciliot, Stefano; Tagliazucchi Malagoli, Guidantonio; Pallafacchina, Giorgia; Tothova, Jana; Argentini, Carla; Agatea, Lisa; Abraham, Reimar; Ahdesmäki, Miika; Forcato, Mattia; Bicciato, Silvio; Schiaffino, Stefano; Blaauw, Bert. - In: MOLECULAR METABOLISM. - ISSN 2212-8778. - ELETTRONICO. - 4:11(2015), pp. 823-833. [10.1016/j.molmet.2015.09.004]

The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle

FORCATO, Mattia;BICCIATO, Silvio;
2015

Abstract

OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. METHODS: We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. RESULTS:We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. CONCLUSIONS: We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca2+-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression.
2015
4
11
823
833
The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle / Dyar, Kenneth A.; Ciciliot, Stefano; Tagliazucchi Malagoli, Guidantonio; Pallafacchina, Giorgia; Tothova, Jana; Argentini, Carla; Agatea, Lisa; Abraham, Reimar; Ahdesmäki, Miika; Forcato, Mattia; Bicciato, Silvio; Schiaffino, Stefano; Blaauw, Bert. - In: MOLECULAR METABOLISM. - ISSN 2212-8778. - ELETTRONICO. - 4:11(2015), pp. 823-833. [10.1016/j.molmet.2015.09.004]
Dyar, Kenneth A.; Ciciliot, Stefano; Tagliazucchi Malagoli, Guidantonio; Pallafacchina, Giorgia; Tothova, Jana; Argentini, Carla; Agatea, Lisa; Abraha...espandi
File in questo prodotto:
File Dimensione Formato  
Dyar_et_al_MolMet_2015.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1076256
Citazioni
  • ???jsp.display-item.citation.pmc??? 41
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 53
social impact