The predatory mite Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae) is one of the most important biocontrol agents of herbivorous mites in European perennial crops. The use of pesticides, such as organophosphate insecticides (OPs), is a major threat to the success of biocontrol strategies based onpredatory mites in these cropping systems. However, resistance to OPs in K. aberrans has recently been reported. The present study investigated the target site resistance mechanisms that are potentially involved in OP insensitivity. In the herbivorous mite Tetranychus urticae Koch (Acari: Tetranychidae), resistance to OPs is due to a modified and insensitive acetylcholinesterase (AChE; EC: 3.1.1.7) that bears amino acid substitution F331W (AChE Torpedo numbering). To determine whether the predators and prey have evolved analogous molecular mechanisms to withstand the same selective pressure, the AChE cDNA from a putative orthologous gene was cloned and sequenced from susceptible and resistant strains of K. aberrans. No synonymous mutation coding for a G119S substitution was determined to be strongly associated with the resistant phenotype instead of the alternative F331W. Because the same mutation in T. urticae AChE was not associated with comparable levels of chlorpyrifos resistance, the role of the G119S substitution in defining insensitive AChE in K. aberrans remains unclear. G119S AChE genotyping can be useful in ecological studies that trace the fate of resistant strains after field release or in marker-assisted selection of improved populations of K. aberrans to achieve multiple resistance phenotypes through gene pyramiding. The latent complexity of the target site resistance in K. aberrans vs. that of T. urticae is also discussed in the context of data from the genome project of the predatory mite Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae).

A single nucleotide polymorphism in the acetylcholinesterase gene of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) is associated with chlorpyrifos resistance / Cassanelli, Stefano; Ahmad, Shakeel; Duso, Carlo; Tirello, Paola; Pozzebon, Alberto. - In: BIOLOGICAL CONTROL. - ISSN 1049-9644. - STAMPA. - 90:(2015), pp. 75-82. [10.1016/j.biocontrol.2015.05.015]

A single nucleotide polymorphism in the acetylcholinesterase gene of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) is associated with chlorpyrifos resistance

CASSANELLI, Stefano;
2015

Abstract

The predatory mite Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae) is one of the most important biocontrol agents of herbivorous mites in European perennial crops. The use of pesticides, such as organophosphate insecticides (OPs), is a major threat to the success of biocontrol strategies based onpredatory mites in these cropping systems. However, resistance to OPs in K. aberrans has recently been reported. The present study investigated the target site resistance mechanisms that are potentially involved in OP insensitivity. In the herbivorous mite Tetranychus urticae Koch (Acari: Tetranychidae), resistance to OPs is due to a modified and insensitive acetylcholinesterase (AChE; EC: 3.1.1.7) that bears amino acid substitution F331W (AChE Torpedo numbering). To determine whether the predators and prey have evolved analogous molecular mechanisms to withstand the same selective pressure, the AChE cDNA from a putative orthologous gene was cloned and sequenced from susceptible and resistant strains of K. aberrans. No synonymous mutation coding for a G119S substitution was determined to be strongly associated with the resistant phenotype instead of the alternative F331W. Because the same mutation in T. urticae AChE was not associated with comparable levels of chlorpyrifos resistance, the role of the G119S substitution in defining insensitive AChE in K. aberrans remains unclear. G119S AChE genotyping can be useful in ecological studies that trace the fate of resistant strains after field release or in marker-assisted selection of improved populations of K. aberrans to achieve multiple resistance phenotypes through gene pyramiding. The latent complexity of the target site resistance in K. aberrans vs. that of T. urticae is also discussed in the context of data from the genome project of the predatory mite Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae).
2015
90
75
82
A single nucleotide polymorphism in the acetylcholinesterase gene of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) is associated with chlorpyrifos resistance / Cassanelli, Stefano; Ahmad, Shakeel; Duso, Carlo; Tirello, Paola; Pozzebon, Alberto. - In: BIOLOGICAL CONTROL. - ISSN 1049-9644. - STAMPA. - 90:(2015), pp. 75-82. [10.1016/j.biocontrol.2015.05.015]
Cassanelli, Stefano; Ahmad, Shakeel; Duso, Carlo; Tirello, Paola; Pozzebon, Alberto
File in questo prodotto:
File Dimensione Formato  
Cassanelli_et_al_2015.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 781.7 kB
Formato Adobe PDF
781.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
A single nucleotide polymorphism in the acetylcholinesterase.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 824.02 kB
Formato Adobe PDF
824.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1076084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact