An exact computation of the persistent Betti numbers of a submanifold X of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of X is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of X from the ones of a union of balls centered on the sample points; this even yields the exact value in restricted areas of the domain. Using these inequalities we improve a previous lower bound for the natural pseudodistance to assess dissimilarity between the shapes of two objects from a sampling of them. Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.
Estimating multidimensional persistent homology through a finite sampling / Cavazza, Niccolò; Ferri, Massimo; Landi, Claudia. - In: INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS. - ISSN 0218-1959. - STAMPA. - 25:3(2015), pp. 187-205. [10.1142/S0218195915500119]
Estimating multidimensional persistent homology through a finite sampling
LANDI, Claudia
2015
Abstract
An exact computation of the persistent Betti numbers of a submanifold X of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of X is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of X from the ones of a union of balls centered on the sample points; this even yields the exact value in restricted areas of the domain. Using these inequalities we improve a previous lower bound for the natural pseudodistance to assess dissimilarity between the shapes of two objects from a sampling of them. Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.File | Dimensione | Formato | |
---|---|---|---|
Blind_Strips.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
467.8 kB
Formato
Adobe PDF
|
467.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
RevisedCavazzaFerriLandiIJCGA-1.pdf
Accesso riservato
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
440.97 kB
Formato
Adobe PDF
|
440.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris