We extend dimensional regularization to the case of compact spaces. Contrary to previous regularization schemes employed for nonlinear sigma models on a finite time interval (``quantum mechanical path integrals in curved space'') dimensional regularization requires only a covariant finite two-loop counterterm. This counterterm is nonvanishing and given by R/8.

Dimensional regularization of nonlinear sigma models on a finite time interval / Bastianelli, F; Corradini, Olindo; Van Nieuwenhuizen, P.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 494:1-2(2000), pp. 161-167. [10.1016/S0370-2693(00)01180-1]

Dimensional regularization of nonlinear sigma models on a finite time interval

CORRADINI, Olindo;
2000

Abstract

We extend dimensional regularization to the case of compact spaces. Contrary to previous regularization schemes employed for nonlinear sigma models on a finite time interval (``quantum mechanical path integrals in curved space'') dimensional regularization requires only a covariant finite two-loop counterterm. This counterterm is nonvanishing and given by R/8.
2000
494
1-2
161
167
Dimensional regularization of nonlinear sigma models on a finite time interval / Bastianelli, F; Corradini, Olindo; Van Nieuwenhuizen, P.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 494:1-2(2000), pp. 161-167. [10.1016/S0370-2693(00)01180-1]
Bastianelli, F; Corradini, Olindo; Van Nieuwenhuizen, P.
File in questo prodotto:
File Dimensione Formato  
PLB494-1.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 98.17 kB
Formato Adobe PDF
98.17 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1074784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 26
social impact