In this manuscript new reduced complexity localization algorithms exploiting received signal strength measurements and based on the indoor map-aware statistical models illustrated in [1] are developed. Such algorithms exploit search domain reduction techniques and state of the art methods for numerical integration and optimization. Our numerical and experimental results evidence that theirs accuracy is very close to that offered by their optimal counterparts, in spite of their substantially lower computational complexity.

Reduced-complexity techniques for indoor map-aware localization / Montorsi, Francesco; Pancaldi, Fabrizio; Vitetta, Giorgio Matteo. - STAMPA. - 1:(2015), pp. 766-772. (Intervento presentato al convegno 2015 IEEE International Conference on Communication tenutosi a London, UK nel 8-12 June 2015) [10.1109/ICCW.2015.7247274].

Reduced-complexity techniques for indoor map-aware localization

MONTORSI, FRANCESCO;PANCALDI, Fabrizio;VITETTA, Giorgio Matteo
2015

Abstract

In this manuscript new reduced complexity localization algorithms exploiting received signal strength measurements and based on the indoor map-aware statistical models illustrated in [1] are developed. Such algorithms exploit search domain reduction techniques and state of the art methods for numerical integration and optimization. Our numerical and experimental results evidence that theirs accuracy is very close to that offered by their optimal counterparts, in spite of their substantially lower computational complexity.
2015
2015 IEEE International Conference on Communication
London, UK
8-12 June 2015
1
766
772
Montorsi, Francesco; Pancaldi, Fabrizio; Vitetta, Giorgio Matteo
Reduced-complexity techniques for indoor map-aware localization / Montorsi, Francesco; Pancaldi, Fabrizio; Vitetta, Giorgio Matteo. - STAMPA. - 1:(2015), pp. 766-772. (Intervento presentato al convegno 2015 IEEE International Conference on Communication tenutosi a London, UK nel 8-12 June 2015) [10.1109/ICCW.2015.7247274].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1074740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact