This paper demonstrates how microstructure-based finite element (FE) modelling can be used to interpret and predict the thermo-mechanical behaviour of thermal spray coatings. Validation is obtained by comparison to experimental and/or literature data.Finite element meshes are therefore constructed on SEM micrographs of high velocity oxygen-fuel (HVOF)-sprayed hardmetals (WC-CoCr, WC-FeCrAl) and plasma-sprayed Cr2O3, employed as case studies. Uniaxial tensile tests simulated on high-magnification micrographs return micro-scale elastic modulus values in good agreement with depth-sensing Berkovich micro-indentation measurements. At the macro-scale, simulated and experimental three-point bending tests are also in good agreement, capturing the typical size-dependency of the mechanical properties of these materials. The models also predict the progressive stiffening of porous plasma-sprayed Cr2O3 due to crack closure under compressive loading, in agreement with literature reports.Refined models of hardmetal coatings, accounting for plastic behaviours and failure stresses, predict crack initiation locations as observed by indentation tests, highlighting the relevance of stress concentrations around microstructural defects (e.g. oxide inclusions).Sliding contact simulations between a hardmetal surface and a small spherical asperity reproduce the fundamental processes in tribological pairings. The experimentally observed "wavy" morphologies of actual wear surfaces are therefore explained by a mechanism of micro-scale plastic flow and matrix extrusion.

Microstructure-based thermo-mechanical modelling of thermal spray coatings / Bolelli, Giovanni; Candeli, Alessia; Koivuluoto, Heli; Lusvarghi, Luca; Manfredini, Tiziano; Vuoristo, Petri. - In: MATERIALS & DESIGN. - ISSN 1873-4197. - ELETTRONICO. - 73:(2015), pp. 20-34. [10.1016/j.matdes.2015.02.014]

Microstructure-based thermo-mechanical modelling of thermal spray coatings

BOLELLI, Giovanni;CANDELI, ALESSIA;LUSVARGHI, Luca;MANFREDINI, Tiziano;
2015

Abstract

This paper demonstrates how microstructure-based finite element (FE) modelling can be used to interpret and predict the thermo-mechanical behaviour of thermal spray coatings. Validation is obtained by comparison to experimental and/or literature data.Finite element meshes are therefore constructed on SEM micrographs of high velocity oxygen-fuel (HVOF)-sprayed hardmetals (WC-CoCr, WC-FeCrAl) and plasma-sprayed Cr2O3, employed as case studies. Uniaxial tensile tests simulated on high-magnification micrographs return micro-scale elastic modulus values in good agreement with depth-sensing Berkovich micro-indentation measurements. At the macro-scale, simulated and experimental three-point bending tests are also in good agreement, capturing the typical size-dependency of the mechanical properties of these materials. The models also predict the progressive stiffening of porous plasma-sprayed Cr2O3 due to crack closure under compressive loading, in agreement with literature reports.Refined models of hardmetal coatings, accounting for plastic behaviours and failure stresses, predict crack initiation locations as observed by indentation tests, highlighting the relevance of stress concentrations around microstructural defects (e.g. oxide inclusions).Sliding contact simulations between a hardmetal surface and a small spherical asperity reproduce the fundamental processes in tribological pairings. The experimentally observed "wavy" morphologies of actual wear surfaces are therefore explained by a mechanism of micro-scale plastic flow and matrix extrusion.
2015
73
20
34
Microstructure-based thermo-mechanical modelling of thermal spray coatings / Bolelli, Giovanni; Candeli, Alessia; Koivuluoto, Heli; Lusvarghi, Luca; Manfredini, Tiziano; Vuoristo, Petri. - In: MATERIALS & DESIGN. - ISSN 1873-4197. - ELETTRONICO. - 73:(2015), pp. 20-34. [10.1016/j.matdes.2015.02.014]
Bolelli, Giovanni; Candeli, Alessia; Koivuluoto, Heli; Lusvarghi, Luca; Manfredini, Tiziano; Vuoristo, Petri
File in questo prodotto:
File Dimensione Formato  
Microstructure-based thermo-mechanical modelling of thermal spray coatings - accepted manuscript.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 7.02 MB
Formato Adobe PDF
7.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1073601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact