Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM’s properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule’s magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope / Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 6:(2015), pp. 1-7. [10.1038/ncomms9216]

Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

CORNIA, Andrea;
2015

Abstract

Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM’s properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule’s magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.
2015
6
1
7
Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope / Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 6:(2015), pp. 1-7. [10.1038/ncomms9216]
Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian
File in questo prodotto:
File Dimensione Formato  
ncomms9216.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 790.81 kB
Formato Adobe PDF
790.81 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1073495
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 49
social impact