Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests.
Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers / Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, Devis; Sola, Antonella; Cannillo, Valeria. - In: JOURNAL OF BIOMEDICAL MATERIALS RESEARCH. PART A. - ISSN 1549-3296. - 102:8(2014), pp. 2502-2510. [10.1002/jbm.a.34918]
Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers
BELLUCCI, Devis;SOLA, Antonella;CANNILLO, Valeria
2014
Abstract
Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris