Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.

Different origin of adipogenic stem cells influences the response to antiretroviral drugs / Gibellini, Lara; DE BIASI, Sara; Nasi, Milena; Carnevale, Gianluca; Pisciotta, Alessandra; Bianchini, Elena; Bartolomeo, Regina; Polo, Miriam; DE POL, Anto; Pinti, Marcello; Cossarizza, Andrea. - In: EXPERIMENTAL CELL RESEARCH. - ISSN 0014-4827. - STAMPA. - 337:2(2015), pp. 160-169. [10.1016/j.yexcr.2015.07.031]

Different origin of adipogenic stem cells influences the response to antiretroviral drugs

GIBELLINI, Lara;DE BIASI, SARA;NASI, Milena;CARNEVALE, Gianluca;PISCIOTTA, ALESSANDRA;BIANCHINI, ELENA;BARTOLOMEO, REGINA;DE POL, Anto;PINTI, Marcello;COSSARIZZA, Andrea
2015

Abstract

Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.
2015
31-lug-2015
337
2
160
169
Different origin of adipogenic stem cells influences the response to antiretroviral drugs / Gibellini, Lara; DE BIASI, Sara; Nasi, Milena; Carnevale, Gianluca; Pisciotta, Alessandra; Bianchini, Elena; Bartolomeo, Regina; Polo, Miriam; DE POL, Anto; Pinti, Marcello; Cossarizza, Andrea. - In: EXPERIMENTAL CELL RESEARCH. - ISSN 0014-4827. - STAMPA. - 337:2(2015), pp. 160-169. [10.1016/j.yexcr.2015.07.031]
Gibellini, Lara; DE BIASI, Sara; Nasi, Milena; Carnevale, Gianluca; Pisciotta, Alessandra; Bianchini, Elena; Bartolomeo, Regina; Polo, Miriam; DE POL,...espandi
File in questo prodotto:
File Dimensione Formato  
2015 ECR - Gibellini.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 5.3 MB
Formato Adobe PDF
5.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1072567
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact