This work investigates the effects of the structure, the bulk chemical composition and amount of the aluminosilicate fines on the strength development, pore refinement, water permeability, moisture control capacity and the microstructure of inorganic polymer concretes (IPC). The amorphous fines, one from pumice and another from recycled glass, presented sponge-like microstructure with tortuous pore network that maintained the presence of fine capillary pores while semi-crystalline feldspar sludge, the third type of fine aggregates used for this study, showed more dense and compact microstructure that explain the higher strength enhancement. Both amorphous and semicrystalline fines contributed to decrease the porosity, improve the strength and microstructure. However, based on the moisture control capacity and the durability indicators, the fine aggregate derived from semicrystalline feldspar was found to be more appropriate and efficient for the development of IPC at short time scale of curing. Pumice fine aggregate was found to be effective only with a long term curing.

Influence of fine aggregates on the microstructure, porosity and chemico-mechanical stability of inorganic polymer concretes / Kamseu, Elie; Ponzoni, Chiara; Tippayasam, Chayanee; Taurino, Rosa; Chaysuwan, Duangrudee; Bignozzi, Maria Chiara; Barbieri, Luisa; Leonelli, Cristina. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - STAMPA. - 96:(2015), pp. 473-483. [10.1016/j.conbuildmat.2015.08.090]

Influence of fine aggregates on the microstructure, porosity and chemico-mechanical stability of inorganic polymer concretes

KAMSEU, Elie;PONZONI, Chiara;TAURINO, Rosa;BARBIERI, Luisa;LEONELLI, Cristina
2015

Abstract

This work investigates the effects of the structure, the bulk chemical composition and amount of the aluminosilicate fines on the strength development, pore refinement, water permeability, moisture control capacity and the microstructure of inorganic polymer concretes (IPC). The amorphous fines, one from pumice and another from recycled glass, presented sponge-like microstructure with tortuous pore network that maintained the presence of fine capillary pores while semi-crystalline feldspar sludge, the third type of fine aggregates used for this study, showed more dense and compact microstructure that explain the higher strength enhancement. Both amorphous and semicrystalline fines contributed to decrease the porosity, improve the strength and microstructure. However, based on the moisture control capacity and the durability indicators, the fine aggregate derived from semicrystalline feldspar was found to be more appropriate and efficient for the development of IPC at short time scale of curing. Pumice fine aggregate was found to be effective only with a long term curing.
2015
96
473
483
Influence of fine aggregates on the microstructure, porosity and chemico-mechanical stability of inorganic polymer concretes / Kamseu, Elie; Ponzoni, Chiara; Tippayasam, Chayanee; Taurino, Rosa; Chaysuwan, Duangrudee; Bignozzi, Maria Chiara; Barbieri, Luisa; Leonelli, Cristina. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - STAMPA. - 96:(2015), pp. 473-483. [10.1016/j.conbuildmat.2015.08.090]
Kamseu, Elie; Ponzoni, Chiara; Tippayasam, Chayanee; Taurino, Rosa; Chaysuwan, Duangrudee; Bignozzi, Maria Chiara; Barbieri, Luisa; Leonelli, Cristina
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1071195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact