Three hydrophilic model drugs with different characteristics and molecular weights, namely protamine sulphate, diclofenac sodium and N6-Cyclopentyladenosine (CPA), were nano-encapsulated in poly(d,l-lactide-co-glycolide) (PLGA) using a novel “in-oil nanoprecipitation” method recently developed for the purpose. Although the same settings were used for all three model drugs, the drug loading efficiency was greatly dependent on their chemical–physical characteristics, being considerably higher for protamine (roughly 93%), intermediate for diclofenac (roughly 50%), and very low for CPA (roughly 7%). The resulting particle size and drug release rates were also strictly model-drug dependent. In the attempt to improve the characteristics of the CPA-loaded nanoparticles, the respective effects of adding an excipient (lauric acid) and substituting PLGA with poly(d,l-lactide) polymer (PLA) were investigated by measuring in vitro drug release and drug degradation kinetics in human whole blood. The results indicate that the proposed method seems promising for the nanoencapsulation of hydrophilic drugs in hydrophobic polymers, and easily modifiable to suit molecules that are difficult to incorporate into a polymeric matrix.
Application of the "in-oil nanoprecipitation" method in the encapsulation of hydrophilic drugs in PLGA nanoparticles / Dalpiaz, Alessandro; Sacchetti, Francesca; Baldisserotto, Anna; Pavan, Barbara; Maretti, Eleonora; Iannuccelli, Valentina; Leo, Eliana Grazia. - In: JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY. - ISSN 1773-2247. - ELETTRONICO. - 32:(2016), pp. 283-290. [10.1016/j.jddst.2015.07.020]
Application of the "in-oil nanoprecipitation" method in the encapsulation of hydrophilic drugs in PLGA nanoparticles
SACCHETTI, FRANCESCA;MARETTI, ELEONORA;IANNUCCELLI, Valentina;LEO, Eliana Grazia
2016
Abstract
Three hydrophilic model drugs with different characteristics and molecular weights, namely protamine sulphate, diclofenac sodium and N6-Cyclopentyladenosine (CPA), were nano-encapsulated in poly(d,l-lactide-co-glycolide) (PLGA) using a novel “in-oil nanoprecipitation” method recently developed for the purpose. Although the same settings were used for all three model drugs, the drug loading efficiency was greatly dependent on their chemical–physical characteristics, being considerably higher for protamine (roughly 93%), intermediate for diclofenac (roughly 50%), and very low for CPA (roughly 7%). The resulting particle size and drug release rates were also strictly model-drug dependent. In the attempt to improve the characteristics of the CPA-loaded nanoparticles, the respective effects of adding an excipient (lauric acid) and substituting PLGA with poly(d,l-lactide) polymer (PLA) were investigated by measuring in vitro drug release and drug degradation kinetics in human whole blood. The results indicate that the proposed method seems promising for the nanoencapsulation of hydrophilic drugs in hydrophobic polymers, and easily modifiable to suit molecules that are difficult to incorporate into a polymeric matrix.File | Dimensione | Formato | |
---|---|---|---|
5) Application of the “in-oil nanoprecipitation” method in the encapsulation of hydrophilic drugs in PLGA nanoparticles.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris