EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca2+ binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy landscape of the protein was reconstructed. Our results emphasize that NCS1 has evolved a remarkable complex interdomain cooperativity and a fundamentally different folding mechanism compared to structurally related proteins.
Single-Molecule Folding Mechanism of an EF-Hand Neuronal Calcium Sensor / Heidarsson, Petur O.; Otazo, Mariela R.; Bellucci, Luca; Mossa, Alessandro; Imparato, Alberto; Paci, Emanuele; Corni, Stefano; DI FELICE, Rosa; Kragelund, Birthe B.; Cecconi, Ciro. - In: STRUCTURE. - ISSN 0969-2126. - 21:10(2013), pp. 1812-1821. [10.1016/j.str.2013.07.022]
Single-Molecule Folding Mechanism of an EF-Hand Neuronal Calcium Sensor
BELLUCCI, LUCA;CORNI, STEFANO;DI FELICE, ROSA;CECCONI, CIRO
2013
Abstract
EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca2+ binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy landscape of the protein was reconstructed. Our results emphasize that NCS1 has evolved a remarkable complex interdomain cooperativity and a fundamentally different folding mechanism compared to structurally related proteins.File | Dimensione | Formato | |
---|---|---|---|
j.str.2013.07.022.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris