Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol-cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of supercooled liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterisation. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artifacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the WELAS optical particle size spectrometers and a characterisation of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterisation Experiment (CLACE) 2013 – an extensive international field campaign encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaign provided an important opportunity for a proof of concept of the inlet design. In this work we present the setup of the ISI, including the modelling and laboratory characterisation of its components, as well as a case study demonstrating the ISI performance in the field during CLACE 2013.

The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds / Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Bigi, Alessandro; Rosati, B.; Gysel, M.; Schnaiter, M.; Baltensperger, U.. - In: ATMOSPHERIC MEASUREMENT TECHNIQUES. PAPERS IN OPEN DISCUSSION.. - ISSN 1867-8610. - 7:(2014), pp. 12481-12515. [10.5194/amtd-7-12481-2014]

The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

BIGI, Alessandro;
2014

Abstract

Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol-cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of supercooled liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterisation. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artifacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the WELAS optical particle size spectrometers and a characterisation of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterisation Experiment (CLACE) 2013 – an extensive international field campaign encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaign provided an important opportunity for a proof of concept of the inlet design. In this work we present the setup of the ISI, including the modelling and laboratory characterisation of its components, as well as a case study demonstrating the ISI performance in the field during CLACE 2013.
2014
7
12481
12515
The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds / Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Bigi, Alessandro; Rosati, B.; Gysel, M.; Schnaiter, M.; Baltensperger, U.. - In: ATMOSPHERIC MEASUREMENT TECHNIQUES. PAPERS IN OPEN DISCUSSION.. - ISSN 1867-8610. - 7:(2014), pp. 12481-12515. [10.5194/amtd-7-12481-2014]
Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Bigi, Alessandro; Rosati, B.; Gysel, M.; Schnaiter, M.; Baltensperger, U.
File in questo prodotto:
File Dimensione Formato  
amtd-7-12481-2014.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1069785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact