We provide existence results for a fractional differential inclusion with nonlocal conditions and impulses in a reflexive Banach space. We apply a technique based on weak topology to avoid any kind of compactness assumption on the nonlinear term. As an example we consider a problem in population dynamic described by an integro-partial-differential inclusion.

On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space / Benedetti, Irene; Obukovskii, Valeri; Taddei, Valentina. - In: JOURNAL OF FUNCTION SPACES. - ISSN 2314-8896. - STAMPA. - 2015:(2015), pp. 1-10. [10.1155/2015/651359]

On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space

TADDEI, Valentina
2015

Abstract

We provide existence results for a fractional differential inclusion with nonlocal conditions and impulses in a reflexive Banach space. We apply a technique based on weak topology to avoid any kind of compactness assumption on the nonlinear term. As an example we consider a problem in population dynamic described by an integro-partial-differential inclusion.
2015
1
10
On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space / Benedetti, Irene; Obukovskii, Valeri; Taddei, Valentina. - In: JOURNAL OF FUNCTION SPACES. - ISSN 2314-8896. - STAMPA. - 2015:(2015), pp. 1-10. [10.1155/2015/651359]
Benedetti, Irene; Obukovskii, Valeri; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Benedetti-Obukhovskii-Taddei2.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1068313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact