We predict inelastic light scattering spectra from electron collective excitations in a coaxial quantum well embedded in a core-multishell GaAs/AlGaAs nanowire. The complex composition, the hexagonal cross section, and the remote doping of typical samples are explicitly included, and the free electron gas is obtained by a density functional theory (DFT) approach. Inelastic light scattering cross sections due to charge and spin collective excitations belonging to quasi-one-dimensional (1D) and quasi-2D states, which coexist in such radial heterostructures, are predicted in the nonresonant approximation from a fully three-dimensional multisubband time-dependent DFT (TDDFT) formalism. We show that collective excitations can be classified in azimuthal, radial, and longitudinal excitations, according to the associated density fluctuations, and we suggest that their character can be exposed by specific spectral dispersion of inelastic light scattering along different planes of the heterostructure.

Prediction of inelastic light scattering spectra from electronic collective excitations in GaAs/AlGaAs core-multishell nanowires / Royo, Miquel; Bertoni, Andrea; Goldoni, Guido. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 91:24(2015), pp. 1-9. [10.1103/PhysRevB.91.245303]

Prediction of inelastic light scattering spectra from electronic collective excitations in GaAs/AlGaAs core-multishell nanowires

BERTONI, Andrea;GOLDONI, Guido
2015

Abstract

We predict inelastic light scattering spectra from electron collective excitations in a coaxial quantum well embedded in a core-multishell GaAs/AlGaAs nanowire. The complex composition, the hexagonal cross section, and the remote doping of typical samples are explicitly included, and the free electron gas is obtained by a density functional theory (DFT) approach. Inelastic light scattering cross sections due to charge and spin collective excitations belonging to quasi-one-dimensional (1D) and quasi-2D states, which coexist in such radial heterostructures, are predicted in the nonresonant approximation from a fully three-dimensional multisubband time-dependent DFT (TDDFT) formalism. We show that collective excitations can be classified in azimuthal, radial, and longitudinal excitations, according to the associated density fluctuations, and we suggest that their character can be exposed by specific spectral dispersion of inelastic light scattering along different planes of the heterostructure.
2015
91
24
1
9
Prediction of inelastic light scattering spectra from electronic collective excitations in GaAs/AlGaAs core-multishell nanowires / Royo, Miquel; Bertoni, Andrea; Goldoni, Guido. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 91:24(2015), pp. 1-9. [10.1103/PhysRevB.91.245303]
Royo, Miquel; Bertoni, Andrea; Goldoni, Guido
File in questo prodotto:
File Dimensione Formato  
PhysRevB.91.245303.pdf

Accesso riservato

Descrizione: testo completo articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1068127
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact