We predict inelastic light scattering spectra from electron collective excitations in a coaxial quantum well embedded in a core-multishell GaAs/AlGaAs nanowire. The complex composition, the hexagonal cross section, and the remote doping of typical samples are explicitly included, and the free electron gas is obtained by a density functional theory (DFT) approach. Inelastic light scattering cross sections due to charge and spin collective excitations belonging to quasi-one-dimensional (1D) and quasi-2D states, which coexist in such radial heterostructures, are predicted in the nonresonant approximation from a fully three-dimensional multisubband time-dependent DFT (TDDFT) formalism. We show that collective excitations can be classified in azimuthal, radial, and longitudinal excitations, according to the associated density fluctuations, and we suggest that their character can be exposed by specific spectral dispersion of inelastic light scattering along different planes of the heterostructure.
Prediction of inelastic light scattering spectra from electronic collective excitations in GaAs/AlGaAs core-multishell nanowires / Royo, Miquel; Bertoni, Andrea; Goldoni, Guido. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 91:24(2015), pp. 1-9. [10.1103/PhysRevB.91.245303]
Prediction of inelastic light scattering spectra from electronic collective excitations in GaAs/AlGaAs core-multishell nanowires
BERTONI, Andrea;GOLDONI, Guido
2015
Abstract
We predict inelastic light scattering spectra from electron collective excitations in a coaxial quantum well embedded in a core-multishell GaAs/AlGaAs nanowire. The complex composition, the hexagonal cross section, and the remote doping of typical samples are explicitly included, and the free electron gas is obtained by a density functional theory (DFT) approach. Inelastic light scattering cross sections due to charge and spin collective excitations belonging to quasi-one-dimensional (1D) and quasi-2D states, which coexist in such radial heterostructures, are predicted in the nonresonant approximation from a fully three-dimensional multisubband time-dependent DFT (TDDFT) formalism. We show that collective excitations can be classified in azimuthal, radial, and longitudinal excitations, according to the associated density fluctuations, and we suggest that their character can be exposed by specific spectral dispersion of inelastic light scattering along different planes of the heterostructure.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.91.245303.pdf
Accesso riservato
Descrizione: testo completo articolo
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris