Natural convection in inclined channels is a rather common flow configuration: it occurs in solar energy systems, ventilated roofs as well as in many industrial applications and chemical processes. Analytical solutions for laminar, fully-developed natural convection in inclined parallel-plate channels are presented in this paper. The Boussinesq approximation is applied and viscous energy dissipation is neglected. One specific thermal configuration is addressed, where one wall is perfectly insulated and a constant, uniform heat flux is released to the fluid from the other wall. The resulting set of governing equations is non-linear, as the mean velocity is not assigned a priori but determined as part of the solution. Depending on the channel inclination angle and on the imposed heat flux conditions, either no solution, one solution, multiple or infinite solutions exist. Under restrictive assumptions velocity profiles are self-similar with respect to the channel inclination, while the temperature profile is independent of the inclination. The two-dimensional, hydraulically- and thermally-developing natural convection channel flow is simulated numerically for some combinations of channel inclination angle and heating intensity to identify the most physical between the many solutions.
Multiplicity of solutions for laminar, fully-developed natural convection in inclined, parallel-plate channels / Piller, Marzio; Polidoro, Sergio; Stalio, Enrico. - In: INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER. - ISSN 0017-9310. - STAMPA. - 79:(2014), pp. 1014-1026. [10.1016/j.ijheatmasstransfer.2014.08.072]
Multiplicity of solutions for laminar, fully-developed natural convection in inclined, parallel-plate channels
POLIDORO, Sergio;STALIO, Enrico
2014
Abstract
Natural convection in inclined channels is a rather common flow configuration: it occurs in solar energy systems, ventilated roofs as well as in many industrial applications and chemical processes. Analytical solutions for laminar, fully-developed natural convection in inclined parallel-plate channels are presented in this paper. The Boussinesq approximation is applied and viscous energy dissipation is neglected. One specific thermal configuration is addressed, where one wall is perfectly insulated and a constant, uniform heat flux is released to the fluid from the other wall. The resulting set of governing equations is non-linear, as the mean velocity is not assigned a priori but determined as part of the solution. Depending on the channel inclination angle and on the imposed heat flux conditions, either no solution, one solution, multiple or infinite solutions exist. Under restrictive assumptions velocity profiles are self-similar with respect to the channel inclination, while the temperature profile is independent of the inclination. The two-dimensional, hydraulically- and thermally-developing natural convection channel flow is simulated numerically for some combinations of channel inclination angle and heating intensity to identify the most physical between the many solutions.File | Dimensione | Formato | |
---|---|---|---|
PillerPolidoroStalioP.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
337.51 kB
Formato
Adobe PDF
|
337.51 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris