Although general anesthetics are thought to modify critical neuronal functions, their impact on neuronal communication has been poorly examined. We have investigated the effect induced by desflurane, a clinically used general anesthetic, on information transfer at the synapse between mossy fibers and granule cells of cerebellum, where this analysis can be carried out extensively. Mutual information values were assessed by measuring the variability of postsynaptic output in relationship to the variability of a given set of presynaptic inputs. Desflurane synchronized granule cell firing and reduced mutual information in response to physiologically relevant mossy fibers patterns. The decrease in spike variability was due to an increased postsynaptic membrane excitability, which made granule cells more prone to elicit action potentials, and to a strengthened synaptic inhibition, which markedly hampered membrane depolarization. These concomitant actions on granule cells firing indicate that desflurane re-shapes the transfer of information between neurons by providing a less informative neurotransmission rather than completely silencing neuronal activity.
The effect of desflurane on neuronal communication at a central synapse / Mapelli, Jonathan; Gandolfi, Daniela; Giuliani, Enrico; Prencipe, FRANCESCO PIO; Pellati, Federica; Barbieri, Alberto; D'Angelo, Egidio; Bigiani, Albertino. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 10:4(2015), pp. 1-18. [10.1371/journal.pone.0123534]
The effect of desflurane on neuronal communication at a central synapse
MAPELLI, Jonathan;Gandolfi, Daniela;GIULIANI, Enrico;PRENCIPE, FRANCESCO PIO;PELLATI, Federica;BARBIERI, Alberto;BIGIANI, Albertino
2015
Abstract
Although general anesthetics are thought to modify critical neuronal functions, their impact on neuronal communication has been poorly examined. We have investigated the effect induced by desflurane, a clinically used general anesthetic, on information transfer at the synapse between mossy fibers and granule cells of cerebellum, where this analysis can be carried out extensively. Mutual information values were assessed by measuring the variability of postsynaptic output in relationship to the variability of a given set of presynaptic inputs. Desflurane synchronized granule cell firing and reduced mutual information in response to physiologically relevant mossy fibers patterns. The decrease in spike variability was due to an increased postsynaptic membrane excitability, which made granule cells more prone to elicit action potentials, and to a strengthened synaptic inhibition, which markedly hampered membrane depolarization. These concomitant actions on granule cells firing indicate that desflurane re-shapes the transfer of information between neurons by providing a less informative neurotransmission rather than completely silencing neuronal activity.File | Dimensione | Formato | |
---|---|---|---|
mapelli2015.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris