Non-stoichiometric ceria nanoparticles (NPs) were obtained by a gas aggregation source with a magnetron and were mass-selected with a quadrupole mass filter. By varying magnetron power, Ar gas flow, and the length of the aggregation tube, NPs with an average diameter of 6, 9, and 14 nm were synthesized and deposited onto a substrate, thus obtaining NP films. The morphology of the films was studied with scanning electron microscopy, while high resolution transmission electron microscopy was used to gain a deeper insight into the atomic structure of individual NPs. By using X-ray photoelectron spectroscopy we analyzed the degree of reduction of the NPs of different diameters, before and after thermal treatments in vacuum (reduction cycle) and in O2 atmosphere (oxidation cycle) at different temperatures. From this analysis we inferred that the size is an important parameter only at intermediate temperatures. As a comparison, we evaluated the reducibility of an ultra-thin ceria film with the same surface to volume ratio as the 9 nm diameter NPs film, observing that NPs are more reducible than the ceria film.

Morphology, structural properties and reducibility of size-selected CeO2- x nanoparticle films / Spadaro, MARIA CHIARA; D'Addato, Sergio; Gasperi, Gabriele; Benedetti, Francesco; Luches, Paola; Grillo, Vincenzo; Bertoni, Giovanni; Valeri, Sergio. - In: BEILSTEIN JOURNAL OF NANOTECHNOLOGY. - ISSN 2190-4286. - ELETTRONICO. - 6:1(2015), pp. 60-67. [10.3762/bjnano.6.7]

Morphology, structural properties and reducibility of size-selected CeO2- x nanoparticle films

SPADARO, MARIA CHIARA;D'ADDATO, Sergio;GASPERI, GABRIELE;BENEDETTI, FRANCESCO;LUCHES, Paola;VALERI, Sergio
2015

Abstract

Non-stoichiometric ceria nanoparticles (NPs) were obtained by a gas aggregation source with a magnetron and were mass-selected with a quadrupole mass filter. By varying magnetron power, Ar gas flow, and the length of the aggregation tube, NPs with an average diameter of 6, 9, and 14 nm were synthesized and deposited onto a substrate, thus obtaining NP films. The morphology of the films was studied with scanning electron microscopy, while high resolution transmission electron microscopy was used to gain a deeper insight into the atomic structure of individual NPs. By using X-ray photoelectron spectroscopy we analyzed the degree of reduction of the NPs of different diameters, before and after thermal treatments in vacuum (reduction cycle) and in O2 atmosphere (oxidation cycle) at different temperatures. From this analysis we inferred that the size is an important parameter only at intermediate temperatures. As a comparison, we evaluated the reducibility of an ultra-thin ceria film with the same surface to volume ratio as the 9 nm diameter NPs film, observing that NPs are more reducible than the ceria film.
2015
6
1
60
67
Morphology, structural properties and reducibility of size-selected CeO2- x nanoparticle films / Spadaro, MARIA CHIARA; D'Addato, Sergio; Gasperi, Gabriele; Benedetti, Francesco; Luches, Paola; Grillo, Vincenzo; Bertoni, Giovanni; Valeri, Sergio. - In: BEILSTEIN JOURNAL OF NANOTECHNOLOGY. - ISSN 2190-4286. - ELETTRONICO. - 6:1(2015), pp. 60-67. [10.3762/bjnano.6.7]
Spadaro, MARIA CHIARA; D'Addato, Sergio; Gasperi, Gabriele; Benedetti, Francesco; Luches, Paola; Grillo, Vincenzo; Bertoni, Giovanni; Valeri, Sergio...espandi
File in questo prodotto:
File Dimensione Formato  
CeO2NPBeilJnano.pdf

Open access

Descrizione: Articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1065474
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact