The co-adsorption of sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS), on the 1-decanethiol self-assembled monolayer (SAM)-functionalized polycrystalline gold surface, is investigated by electrochemical techniques. The peak current (cyclic voltammetry) and charge transfer resistance (impedance spectra) variations are measured, concerning the [Fe(CN)6]3−/[Fe(CN)6]4− couple redox process. SDBS is found to yield a more efficient inhibiting barrier (towards the charge transfer process), when compared to the SDS one. Thus, it is suggesting that a higher tendency of SDBS to be co-adsorbed within the 1-decanethiol SAM with respect to SDS.
On the co-adsorption process of sodium dodecyl sulfate and sodium dodecylbenzenesulfonate on a 1-decanethiol-functionalized Au electrode, as a corrosion inhibiting mimic process / Fontanesi, Claudio; Camurri, Giulio; Tassinari, Francesco. - In: JOURNAL OF APPLIED ELECTROCHEMISTRY. - ISSN 0021-891X. - STAMPA. - 43:2(2013), pp. 101-106. [10.1007/s10800-012-0486-1]
On the co-adsorption process of sodium dodecyl sulfate and sodium dodecylbenzenesulfonate on a 1-decanethiol-functionalized Au electrode, as a corrosion inhibiting mimic process
FONTANESI, Claudio
;TASSINARI, FRANCESCO
2013
Abstract
The co-adsorption of sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS), on the 1-decanethiol self-assembled monolayer (SAM)-functionalized polycrystalline gold surface, is investigated by electrochemical techniques. The peak current (cyclic voltammetry) and charge transfer resistance (impedance spectra) variations are measured, concerning the [Fe(CN)6]3−/[Fe(CN)6]4− couple redox process. SDBS is found to yield a more efficient inhibiting barrier (towards the charge transfer process), when compared to the SDS one. Thus, it is suggesting that a higher tendency of SDBS to be co-adsorbed within the 1-decanethiol SAM with respect to SDS.File | Dimensione | Formato | |
---|---|---|---|
JAppElectrochem-2012.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
605.03 kB
Formato
Adobe PDF
|
605.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris