The present work provides a definitive answer to the problem of quantifying relaxation to equilibrium of the solution to the spatially homogeneous Boltzmann equation for Maxwellian molecules. Under really mild conditions on the initial datum and a weak, physically consistent, angular cutoff hypothesis, our main result (Theorem 1) contains the first precise statement that the total variation distance between the solution and the limiting Maxwellian distribution admits an upper bound of the form C exp(Λ_b t), Λ_b being the least negative eigenvalue of the linearized collision operator and C a constant depending only on the initial datum. The validity of this quantification was conjectured, about fifty years ago, by Henry P. McKean. As to the proof of our results, we have taken as point of reference an analogy between the problem of convergence to equilibrium and the central limit theorem of probability theory, highlighted by McKean.
Proof of a McKean conjecture on the rate of convergence of Boltzmann-equation solutions / Dolera, Emanuele; Regazzini, Eugenio. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN 0178-8051. - STAMPA. - 160(2014), pp. 315-389.
Data di pubblicazione: | 2014 |
Data di prima pubblicazione: | 8-ott-2013 |
Titolo: | Proof of a McKean conjecture on the rate of convergence of Boltzmann-equation solutions. |
Autore/i: | Dolera, Emanuele; Regazzini, Eugenio |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00440-013-0530-z |
Rivista: | |
Volume: | 160 |
Pagina iniziale: | 315 |
Pagina finale: | 389 |
Codice identificativo ISI: | WOS:000341865900009 |
Codice identificativo Scopus: | 2-s2.0-84925838208 |
Citazione: | Proof of a McKean conjecture on the rate of convergence of Boltzmann-equation solutions / Dolera, Emanuele; Regazzini, Eugenio. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN 0178-8051. - STAMPA. - 160(2014), pp. 315-389. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris