Narrow graphene nanoribbons exhibit substantial electronic bandgaps and optical properties fundamentally different from those of graphene. Unlike graphene--which shows a wavelength-independent absorbance for visible light--the electronic bandgap, and therefore the optical response, of graphene nanoribbons changes with ribbon width. Here we report on the optical properties of armchair graphene nanoribbons of width N=7 grown on metal surfaces. Reflectance difference spectroscopy in combination with ab initio calculations show that ultranarrow graphene nanoribbons have fully anisotropic optical properties dominated by excitonic effects that sensitively depend on the exact atomic structure. For N=7 armchair graphene nanoribbons, the optical response is dominated by absorption features at 2.1, 2.3 and 4.2 eV, in excellent agreement with ab initio calculations, which also reveal an absorbance of more than twice the one of graphene for linearly polarized light in the visible range of wavelengths.

Exciton-dominated optical response of ultra-narrow graphene nanoribbons / Denk, Richard; Hohage, Michael; Zeppenfeld, Peter; Cai, Jinming; Pignedoli, Carlo A; Söde, Hajo; Fasel, Roman; Feng, Xinliang; Müllen, Klaus; Wang, Shudong; Prezzi, Deborah; Ferretti, Andrea; Ruini, Alice; Molinari, Elisa; Ruffieux, Pascal. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 5:(2014), pp. 4253-4523. [10.1038/ncomms5253]

Exciton-dominated optical response of ultra-narrow graphene nanoribbons

PREZZI, Deborah;FERRETTI, Andrea;RUINI, Alice;MOLINARI, Elisa;
2014

Abstract

Narrow graphene nanoribbons exhibit substantial electronic bandgaps and optical properties fundamentally different from those of graphene. Unlike graphene--which shows a wavelength-independent absorbance for visible light--the electronic bandgap, and therefore the optical response, of graphene nanoribbons changes with ribbon width. Here we report on the optical properties of armchair graphene nanoribbons of width N=7 grown on metal surfaces. Reflectance difference spectroscopy in combination with ab initio calculations show that ultranarrow graphene nanoribbons have fully anisotropic optical properties dominated by excitonic effects that sensitively depend on the exact atomic structure. For N=7 armchair graphene nanoribbons, the optical response is dominated by absorption features at 2.1, 2.3 and 4.2 eV, in excellent agreement with ab initio calculations, which also reveal an absorbance of more than twice the one of graphene for linearly polarized light in the visible range of wavelengths.
2014
5
4253
4523
Exciton-dominated optical response of ultra-narrow graphene nanoribbons / Denk, Richard; Hohage, Michael; Zeppenfeld, Peter; Cai, Jinming; Pignedoli, Carlo A; Söde, Hajo; Fasel, Roman; Feng, Xinliang; Müllen, Klaus; Wang, Shudong; Prezzi, Deborah; Ferretti, Andrea; Ruini, Alice; Molinari, Elisa; Ruffieux, Pascal. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 5:(2014), pp. 4253-4523. [10.1038/ncomms5253]
Denk, Richard; Hohage, Michael; Zeppenfeld, Peter; Cai, Jinming; Pignedoli, Carlo A; Söde, Hajo; Fasel, Roman; Feng, Xinliang; Müllen, Klaus; Wang, Sh...espandi
File in questo prodotto:
File Dimensione Formato  
denk+14natcom.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 827.13 kB
Formato Adobe PDF
827.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1064307
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 166
  • ???jsp.display-item.citation.isi??? 154
social impact