Using first-principles calculations we studied the electric field enhancement in polyacene molecules upon illumination. These molecules can be seen as a specific class of C-based (i.e., graphene-derived) nanostructures, recently proposed as alternative materials for plasmonics. We demonstrate that optical transitions may generate oscillating dipolar response charge, giving rise to an induced electric field near the molecule, which thus acts as a plasmon-like nanoantenna. While the field amplification in the vicinity of single acenes is rather small and decreases when the size of the system is increased, it may be selectively enhanced in the case of acenes assemblies. This paves the way for the design of more complex C-based architectures explicitly conceived to improve the amplification factor.
Light-Induced Field Enhancement in Nanoscale Systems from First-Principles: The Case of Polyacenes / Bursi, Luca; Calzolari, Arrigo; Corni, Stefano; Molinari, Elisa. - In: ACS PHOTONICS. - ISSN 2330-4022. - ELETTRONICO. - 1:10(2014), pp. 1049-1058. [10.1021/ph500269q]
Light-Induced Field Enhancement in Nanoscale Systems from First-Principles: The Case of Polyacenes
BURSI, LUCA;CALZOLARI, ARRIGO;CORNI, STEFANO;MOLINARI, Elisa
2014
Abstract
Using first-principles calculations we studied the electric field enhancement in polyacene molecules upon illumination. These molecules can be seen as a specific class of C-based (i.e., graphene-derived) nanostructures, recently proposed as alternative materials for plasmonics. We demonstrate that optical transitions may generate oscillating dipolar response charge, giving rise to an induced electric field near the molecule, which thus acts as a plasmon-like nanoantenna. While the field amplification in the vicinity of single acenes is rather small and decreases when the size of the system is increased, it may be selectively enhanced in the case of acenes assemblies. This paves the way for the design of more complex C-based architectures explicitly conceived to improve the amplification factor.File | Dimensione | Formato | |
---|---|---|---|
Bursi_Light_induced_field_enhancement_in_polyacenes_ACSPhotonics_2014.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris