Scanning probe microscopy are an extraordinary tools for surfaces characterization at nano and atomic scale and also for nanofabrication whose major limitation depends on the serial nature of the related techniques. Here we propose an interesting approach applied to a supramolecular system (rotaxane) that contributes to overcome this limitation. When a local mechanical perturbation is applied to the surface of a thin film of a rotaxane, the molecules self-organize into periodic arrays of discrete dots or lines. The dimensionality of the nanostructures depends on whether the mechanical stimulus acts along a 1D line or over a 2D area. The size and periodicity of the patterns are controlled solely by the film thickness. The phenomenon can be exploited as a new bottom-up nanofabrication method.
Self-organisation of molecular nanostructures triggered by atomic force microscopy / Cavallini, Massimiliano; Biscarini, Fabio. - In: MICROSCOPIE. - STAMPA. - 10:(2013), pp. 42-45. [10.4081/microscopie.2013.4986]
Self-organisation of molecular nanostructures triggered by atomic force microscopy
BISCARINI, FABIO
2013
Abstract
Scanning probe microscopy are an extraordinary tools for surfaces characterization at nano and atomic scale and also for nanofabrication whose major limitation depends on the serial nature of the related techniques. Here we propose an interesting approach applied to a supramolecular system (rotaxane) that contributes to overcome this limitation. When a local mechanical perturbation is applied to the surface of a thin film of a rotaxane, the molecules self-organize into periodic arrays of discrete dots or lines. The dimensionality of the nanostructures depends on whether the mechanical stimulus acts along a 1D line or over a 2D area. The size and periodicity of the patterns are controlled solely by the film thickness. The phenomenon can be exploited as a new bottom-up nanofabrication method.File | Dimensione | Formato | |
---|---|---|---|
4986-17716-1-SM.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
181.43 kB
Formato
Adobe PDF
|
181.43 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris