In the present paper we consider estimation procedures for stationary Stochastic Volatility models, making inferences about the latent volatility of the process. We show that a sequence of generalized least squares regressions enables us to determine the estimates. Finally, we make inferences iteratively by using the Kalman Filter algorithm.
Inference Methods for Stochastic Volatility Models / Cavicchioli, Maddalena. - In: INTERNATIONAL MATHEMATICAL FORUM. - ISSN 1312-7594. - STAMPA. - 8:(2013), pp. 369-375.
Inference Methods for Stochastic Volatility Models
CAVICCHIOLI, MADDALENA
2013
Abstract
In the present paper we consider estimation procedures for stationary Stochastic Volatility models, making inferences about the latent volatility of the process. We show that a sequence of generalized least squares regressions enables us to determine the estimates. Finally, we make inferences iteratively by using the Kalman Filter algorithm.File | Dimensione | Formato | |
---|---|---|---|
cavicchioliIMF5-8-2013.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
87.09 kB
Formato
Adobe PDF
|
87.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris