We develop an "improved convergence theorem" for a case study variational problem with singularities, namely, the isoperimetric problem on planar bubble clusters. We exploit this theorem in the description of isoperimetric clusters, possibly perturbed by a potential. Our methods are not specific to bubble clusters, and should provide a starting point to address similar issues in other variational problems where minimizers are known to possibly develop singularities. Further applications and extensions are discussed in companion papers.

Improved convergence theorems for bubble clusters. I. The planar case / Marco, Cicalese; Leonardi, Gian Paolo; Francesco, Maggi. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - ELETTRONICO. - 65:6(2016), pp. 1979-2050. [10.1512/iumj.2016.65.5932]

Improved convergence theorems for bubble clusters. I. The planar case

LEONARDI, Gian Paolo;
2016

Abstract

We develop an "improved convergence theorem" for a case study variational problem with singularities, namely, the isoperimetric problem on planar bubble clusters. We exploit this theorem in the description of isoperimetric clusters, possibly perturbed by a potential. Our methods are not specific to bubble clusters, and should provide a starting point to address similar issues in other variational problems where minimizers are known to possibly develop singularities. Further applications and extensions are discussed in companion papers.
2016
65
6
1979
2050
Improved convergence theorems for bubble clusters. I. The planar case / Marco, Cicalese; Leonardi, Gian Paolo; Francesco, Maggi. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - ELETTRONICO. - 65:6(2016), pp. 1979-2050. [10.1512/iumj.2016.65.5932]
Marco, Cicalese; Leonardi, Gian Paolo; Francesco, Maggi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1060617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact