We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results [4]. As an application of our main result we complete and simplify the analysis in [6], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.
Corners in non-equiregular sub-Riemannian manifolds / LE DONNE, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 21:3(2015), pp. 625-634. [10.1051/cocv/2014041]
Corners in non-equiregular sub-Riemannian manifolds
LEONARDI, Gian Paolo;
2015
Abstract
We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results [4]. As an application of our main result we complete and simplify the analysis in [6], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.File | Dimensione | Formato | |
---|---|---|---|
LeDLeoMonVit_COCV2014.pdf
Open access
Descrizione: Articolo pubblicato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
191.91 kB
Formato
Adobe PDF
|
191.91 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris