In this paper we consider the Cheeger problem for non-convex domains, with a particular interest in the case of planar strips, which have been extensively studied in recent years. Our main results are an estimate on the Cheeger constant of strips, which is stronger than the previous one known from a recent result by D. Krejcirik and the second-named author, and the proof that strips share with convex domains a number of crucial properties with respect to the Cheeger problem. Moreover, we present several counterexamples showing that the same properties are not valid for generic non-convex domains.
On the Cheeger sets in strips and non-convex domains / Leonardi, Gian Paolo; Pratelli, Aldo. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - ELETTRONICO. - 55:1(2016), pp. 1-28. [10.1007/s00526-016-0953-3]
On the Cheeger sets in strips and non-convex domains
LEONARDI, Gian Paolo;
2016-01-01
Abstract
In this paper we consider the Cheeger problem for non-convex domains, with a particular interest in the case of planar strips, which have been extensively studied in recent years. Our main results are an estimate on the Cheeger constant of strips, which is stronger than the previous one known from a recent result by D. Krejcirik and the second-named author, and the proof that strips share with convex domains a number of crucial properties with respect to the Cheeger problem. Moreover, we present several counterexamples showing that the same properties are not valid for generic non-convex domains.File | Dimensione | Formato | |
---|---|---|---|
LeonardiPratelli2016.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipologia:
Versione pubblicata dall'editore
Dimensione
848.57 kB
Formato
Adobe PDF
|
848.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cheegerLP2014.pdf
Open Access dal 23/01/2017
Descrizione: preprint
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
521.91 kB
Formato
Adobe PDF
|
521.91 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris