In this paper we propose to extend the well known graph cut segmentation framework by learning superpixel relations and use them to weight superpixel-to-superpixel edges in a superpixel graph. Adjacent superpixel-pairs are analyzed to build an object boundary model, able to discriminate between superpixel-pairs belonging to the same object or placed on the edge between the foreground object and the background. Several superpixel-pair features are investigated and exploited to build a non-linear SVM to learn object boundary appearance. The adoption of this modified graph cut enhances the performance of a previously proposed segmentation method on two publicly available datasets, reaching state-of-the-art results.
Learning Superpixel Relations for Supervised Image Segmentation / Manfredi, Marco; Grana, Costantino; Cucchiara, Rita. - ELETTRONICO. - (2014), pp. 4437-4441. (Intervento presentato al convegno 21st International Conference on Image Processing tenutosi a Paris, France nel Oct. 27-30) [10.1109/ICIP.2014.7025900].
Learning Superpixel Relations for Supervised Image Segmentation
MANFREDI, MARCO;GRANA, Costantino;CUCCHIARA, Rita
2014
Abstract
In this paper we propose to extend the well known graph cut segmentation framework by learning superpixel relations and use them to weight superpixel-to-superpixel edges in a superpixel graph. Adjacent superpixel-pairs are analyzed to build an object boundary model, able to discriminate between superpixel-pairs belonging to the same object or placed on the edge between the foreground object and the background. Several superpixel-pair features are investigated and exploited to build a non-linear SVM to learn object boundary appearance. The adoption of this modified graph cut enhances the performance of a previously proposed segmentation method on two publicly available datasets, reaching state-of-the-art results.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris