This paper deals with the solution of nonlinear programming problems arising from elliptic control problems by an interior point scheme. At each step of the scheme, we have to solve a large scale symmetric and indefinite system; inner iterative solvers, with adaptive stopping rule, can be used in order to avoid unnecessary inner iterations, especially when the current outer iterate is far from the solution. In this work, we analyze the method of multipliers and the preconditioned conjugate gradient method as inner solvers for interior point schemes. We discuss on the convergence of the whole approach, on the implementation details and we report results of a numerical experimentation on a set of large scale test problems arising from the discretization of elliptic control problems. A comparison with other interior point codes is also reported.
Bonettini, Silvia, Emanuele, Galligani e V., Ruggiero. "Inner solvers for interior point methods for large scale nonlinear programming" Working paper, N/A, Dipartimento di Matematica Giuseppe Vitali - Università di Modena e Reggio Emilia, 2005. https://doi.org/10.25431/11380_1060322
Inner solvers for interior point methods for large scale nonlinear programming
BONETTINI, Silvia;GALLIGANI, Emanuele;
2005
Abstract
This paper deals with the solution of nonlinear programming problems arising from elliptic control problems by an interior point scheme. At each step of the scheme, we have to solve a large scale symmetric and indefinite system; inner iterative solvers, with adaptive stopping rule, can be used in order to avoid unnecessary inner iterations, especially when the current outer iterate is far from the solution. In this work, we analyze the method of multipliers and the preconditioned conjugate gradient method as inner solvers for interior point schemes. We discuss on the convergence of the whole approach, on the implementation details and we report results of a numerical experimentation on a set of large scale test problems arising from the discretization of elliptic control problems. A comparison with other interior point codes is also reported.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris