Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3 P1 (m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre / Okaba, S.; Takano, T.; Benabid, F.; Bradley, T.; Vincetti, Luca; Maizelis, Z.; Yampol'Skii, V.; Nori, F.; Katori, H.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 5:(2014), pp. 1-9. [10.1038/ncomms5096]

Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

VINCETTI, Luca;
2014

Abstract

Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3 P1 (m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.
2014
5
1
9
Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre / Okaba, S.; Takano, T.; Benabid, F.; Bradley, T.; Vincetti, Luca; Maizelis, Z.; Yampol'Skii, V.; Nori, F.; Katori, H.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 5:(2014), pp. 1-9. [10.1038/ncomms5096]
Okaba, S.; Takano, T.; Benabid, F.; Bradley, T.; Vincetti, Luca; Maizelis, Z.; Yampol'Skii, V.; Nori, F.; Katori, H.
File in questo prodotto:
File Dimensione Formato  
ncomms5096.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1060318
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 83
social impact