In this work we examine a large dataset of 335 million anonymized call records made by 3 million users during 47 days in a region of northern Italy. Combining this dataset with publicly available user data, from different social networking ser-vices, we present a probabilistic approach to evaluate the potential of re-identification of the anonymized call records dataset. In this sense, our work explores different ways of analyzing data and data fusion techniques to integrate different mobility datasets together. On the one hand, this kind of approaches can breach users' privacy despite anonymization, so it is worth studying carefully. On the other hand, combining different datasets is a key enabler for advanced context-awareness in that information form multiple sources can complement and enrich each other.

Re-identification of Anonymized CDR datasets Using Social Network Data / Cecaj, Alket; Mamei, Marco; Bicocchi, Nicola. - STAMPA. - (2014), pp. 237-242. ((Intervento presentato al convegno PERVASIVE COMPUTING AND COMMUNICATION WORKSHOPS. IEEE INTERNATIONAL CONFERENCE tenutosi a Budapest nel 24-28 March 2014.

Re-identification of Anonymized CDR datasets Using Social Network Data

CECAJ, ALKET;MAMEI, Marco;BICOCCHI, Nicola
2014

Abstract

In this work we examine a large dataset of 335 million anonymized call records made by 3 million users during 47 days in a region of northern Italy. Combining this dataset with publicly available user data, from different social networking ser-vices, we present a probabilistic approach to evaluate the potential of re-identification of the anonymized call records dataset. In this sense, our work explores different ways of analyzing data and data fusion techniques to integrate different mobility datasets together. On the one hand, this kind of approaches can breach users' privacy despite anonymization, so it is worth studying carefully. On the other hand, combining different datasets is a key enabler for advanced context-awareness in that information form multiple sources can complement and enrich each other.
PERVASIVE COMPUTING AND COMMUNICATION WORKSHOPS. IEEE INTERNATIONAL CONFERENCE
Budapest
24-28 March 2014
237
242
Cecaj, Alket; Mamei, Marco; Bicocchi, Nicola
Re-identification of Anonymized CDR datasets Using Social Network Data / Cecaj, Alket; Mamei, Marco; Bicocchi, Nicola. - STAMPA. - (2014), pp. 237-242. ((Intervento presentato al convegno PERVASIVE COMPUTING AND COMMUNICATION WORKSHOPS. IEEE INTERNATIONAL CONFERENCE tenutosi a Budapest nel 24-28 March 2014.
File in questo prodotto:
File Dimensione Formato  
permoby.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 522.89 kB
Formato Adobe PDF
522.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1054927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact