Can we automatically identify relevant places and events happening in the city from the analysis of mobile network use? In this paper we present a methodology to discover events from human mobility patterns as recorded by mobile network usage. Experiments conducted over an extensive dataset from the main Italian telecom operator show that the proposed approach is effective and can be applied to a number of different scenarios. These results can have a strong impact on a wide range of pervasive applications ranging from location-based services to urban planning.

Discovering Events in the City Via Mobile Network Analysis / L., Ferrari; Mamei, Marco; M., Colonna. - In: JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING. - ISSN 1868-5137. - STAMPA. - 5:3(2014), pp. 265-277. [10.1007/s12652-012-0169-0]

Discovering Events in the City Via Mobile Network Analysis

MAMEI, Marco;
2014

Abstract

Can we automatically identify relevant places and events happening in the city from the analysis of mobile network use? In this paper we present a methodology to discover events from human mobility patterns as recorded by mobile network usage. Experiments conducted over an extensive dataset from the main Italian telecom operator show that the proposed approach is effective and can be applied to a number of different scenarios. These results can have a strong impact on a wide range of pervasive applications ranging from location-based services to urban planning.
2014
5
3
265
277
Discovering Events in the City Via Mobile Network Analysis / L., Ferrari; Mamei, Marco; M., Colonna. - In: JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING. - ISSN 1868-5137. - STAMPA. - 5:3(2014), pp. 265-277. [10.1007/s12652-012-0169-0]
L., Ferrari; Mamei, Marco; M., Colonna
File in questo prodotto:
File Dimensione Formato  
jaihc.pdf

Accesso riservato

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 4.49 MB
Formato Adobe PDF
4.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1054921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 14
social impact