In this work, we give simple matrix formulae for maximum likelihood estimates of parameters in a broad class of vector autoregressions subject to Markovian changes in regime. This allows us to determine explicitly the asymptotic variance-covariance matrix of the estimators, giving a concrete possibility for the use of the classical testing procedures. In the context of multivariate autoregressive conditional heteroskedastic models with changes in regime, we provide formulae for the analytic derivatives of the log likelihood. Then we prove the consistency of some maximum likelihood estimators and give some formulae for the asymptotic variance of the different estimators.
ANALYSIS OF THE LIKELIHOOD FUNCTION FOR MARKOV-SWITCHING VAR(CH) MODELS / Cavicchioli, Maddalena. - In: JOURNAL OF TIME SERIES ANALYSIS. - ISSN 0143-9782. - STAMPA. - 35:6(2014), pp. 624-639. [10.1111/jtsa.12085]
ANALYSIS OF THE LIKELIHOOD FUNCTION FOR MARKOV-SWITCHING VAR(CH) MODELS
CAVICCHIOLI, MADDALENA
2014
Abstract
In this work, we give simple matrix formulae for maximum likelihood estimates of parameters in a broad class of vector autoregressions subject to Markovian changes in regime. This allows us to determine explicitly the asymptotic variance-covariance matrix of the estimators, giving a concrete possibility for the use of the classical testing procedures. In the context of multivariate autoregressive conditional heteroskedastic models with changes in regime, we provide formulae for the analytic derivatives of the log likelihood. Then we prove the consistency of some maximum likelihood estimators and give some formulae for the asymptotic variance of the different estimators.File | Dimensione | Formato | |
---|---|---|---|
final_pubblication_jtsa.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
227.18 kB
Formato
Adobe PDF
|
227.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris